University of Southern California
This research is based on work supported by the National Science Foundation (Grant 2141790)
The paper has been accepted for publication in Structural Equation Modeling
P(yj∣η,g)=P(yj∣η)for all g,η
dMACSj,(g1,g2)=√∫(ˆYjg1−ˆYjg2|η)2f(η)dηVar(Yj)
For G groups, each of size ng and total sample size N,
f2MACSj=1NGjVar(Yj)Gj∑g=1ng∫∞−∞(ˆYjg−ˉˆYj|η)2f(η)dη=SD2noninvarianceSD2item score.
Osberg et al. (2010), p. 6, Table 2
library(pinsearch) # Specification search for # partial invariance ps <- pinSearch( mod, data = dat, group = "group", estimator = "MLR", missing = "fiml", type = "residual.covariances") # Obtain omnibus fmacs # effect size (for lavaan objects) (f_omni <- pin_effsize(ps[[1]]))
library(pinsearch) # Specification search for # partial invariance ps <- pinSearch( mod, data = dat, group = "group", estimator = "MLR", missing = "fiml", type = "residual.covariances") # Obtain omnibus fmacs # effect size (for lavaan objects) (f_omni <- pin_effsize(ps[[1]]))
fMACS effect sizes for the CLASS items | ||||
---|---|---|---|---|
Overall | Gender | Ethnicity | Gender x Ethnicity | |
class1 | 0.10 | 0.03 | 0.05 | 0.05 |
class2 | 0.10 | 0.08 | 0.06 | 0.06 |
class3 | 0.07 | 0.03 | 0.04 | 0.04 |
class4 | 0.11 | 0.04 | 0.09 | 0.05 |
class5 | 0.06 | 0.03 | 0.04 | 0.04 |
class7 | 0.08 | 0.00 | 0.07 | 0.00 |
class8 | 0.09 | 0.04 | 0.05 | 0.05 |
class14 | 0.15 | 0.04 | 0.07 | 0.07 |
Test-level fMACS (unweighted or weighted sums)
Bootstrap bias correction and confidence intervals
Thank you for your attention!