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Abstract22

In path analysis, using composite scores without adjustment for measurement unreliability and violations23

of factorial invariance across groups leads to biased estimates of path coefficients. Although joint modeling24

of measurement and structural models can theoretically yield consistent structural association estimates,25

the estimation of a model with many variables is often impractical in small samples. A viable alternative is26

two-stage path analysis (2S-PA), where researchers first obtain factor scores and the corresponding27

individual-specific reliability coefficients, and then use those factor scores to analyze structural associations28

while accounting for their unreliability. The current paper extends 2S-PA to also account for partial29

invariance. Two simulation studies show that 2S-PA outperforms joint modeling in terms of model30

convergence, the efficiency of structural parameter estimation, and confidence interval coverage, especially31

in small samples and with categorical indicators. We illustrate 2S-PA by reanalyzing data from a32

multiethnic study that predicts drinking problems using college-related alcohol beliefs.33

Keywords: two-stage path analysis, factorial invariance, partial invariance, measurement error,34

factor scores35

Word count: 7,36636
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Correcting for Unreliability and Partial Invariance: A Two-Stage Path Analysis Approach37

Over the past two decades, there has been a tremendous increase in research evaluating the38

measurement invariance of instruments in psychology. If measurement invariance—the condition that an39

instrument measures the same construct the same way across groups—is violated, the observed composite40

scores are not on the same metric across groups, and thus group comparisons using those scores are not41

meaningful. That said, when only part of the items in an instrument is noninvariant—meaning that the42

instrument is partially invariant—researchers can still obtain valid statistical results by jointly modeling43

partial invariance and the structural associations among the latent constructs see Hsiao and Lai, 2018.44

However, the joint modeling approach is computationally demanding as it requires including all45

measurement indicators in the analysis, even when researchers only have a relatively simple structural46

model. Also, when the sample size is relatively small, joint modeling often suffers from issues of47

convergence and nonadmissible solutions (Rosseel, 2020). As discussed later in this paper, in practice,48

researchers rarely use the joint modeling approach to adjust for partial invariance, but continue to use49

composite scores (e.g., sum scores or mean scores) following invariance analyses.50

However, using composite scores without any adjustment is potentially problematic in two regards.51

First, the presence of noninvariant items can systematically bias analysis results, such as regression52

coefficients or mean comparisons. Second, using composite scores assumes that they do not contain53

measurement error, meaning they are perfectly reliable, which is rare, if possible, in behavioral and social54

sciences. It is well known in the literature that ignoring measurement unreliability leads to biased55

regression coefficients (e.g., Carroll et al., 2006; Cole & Preacher, 2014; Ledgerwood & Shrout, 2011).56

As an alternative, recently, there has been a renewed interest in using psychometric-model-based57

factor scores (e.g., Estabrook & Neale, 2013; McNeish & Wolf, 2020), which adjust for partial invariance to58

put the latent variables on a common or approximately common metric (e.g., Curran & Hussong, 2009).59

However, like sum scores, factor scores are also not perfectly reliable, so using them in analyses without60

correction for measurement error will still lead to biased coefficients, with the magnitude of bias depending61

on the reliability of the factor scores (Croon, 2002; Levy, 2017). Also, as shown later, when partial62

invariance exists, not every way of computing factor scores results in scores on the same metric, so further63

adjustment is needed.64

Two general and related approaches to account for measurement error when using estimated scores65

(i.e., composite or factor scores) are of interest. In the first approach, researchers first obtain naive path66

coefficients by treating the estimated scores as the true latent variable scores. Correction factors are67

obtained based on the relation between the estimated scores and the latent variable in the measurement68
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model, and then applied to the naive coefficients to obtain corrected coefficients. The correction factors are69

usually functions of score reliability. Fan (2003) discussed an example with two latent variables, η𝑋 and η𝑌 .70

When the two latent variables were measured by multi-item scales that give composite scores 𝑋 and 𝑌 ,71

respectively, one can estimate the true correlation between η𝑋 and η𝑌 as 𝑟𝑋𝑌/
√
ρ𝑋ρ𝑌 , where 𝑟𝑋𝑌 is the72

correlation between the composite scores and ρ𝑋 and ρ𝑌 are the composite reliability of 𝑋 and 𝑌 ,73

respectively. Croon (2002) showed how this approach can be used when factor scores are used instead, with74

slightly more involved correction formulas that are functions of factor loadings and latent variances. The75

method of Croon was further elaborated in the method of factor score path analysis (Devlieger & Rosseel,76

2017; Devlieger et al., 2016), which also includes corrected standard errors and inferences for the corrected77

path coefficients.78

The second approach is the reliability adjustment method, which treats the composite scores or79

factor scores as single indicators of latent variables and constrains the reliability of these indicators to80

either known values or estimates from the data (e.g., Bollen, 1989; Hsiao et al., 2018, 2021; Kwok et al.,81

2016; Savalei, 2019). However, both the correction factor approach and the reliability adjustment method82

generally assume constant measurement error variance for the whole sample, which is likely violated when83

only partial invariance holds or when indicators are binary or ordinal. Thus, previous methods for handling84

measurement error only address parameter bias due to unreliability, and may still yield inconsistent85

estimates due to unadjusted partial invariance. A more general approach to reliability adjustment is the86

two-stage path-analysis (2S-PA) with definition variables method by M. H. C. Lai and Hsiao (2021), which87

accounts for the unreliability in factor scores even when reliability is not constant across observations.88

While previous studies have only focused on the reliability adjustment aspect of 2S-PA, the current paper89

shows how researchers can use 2S-PA to adjust for both partial invariance and unreliability for continuous90

and discrete indicators. We also report evidence from two simulation studies showing that 2S-PA has fewer91

convergence issues and more accurate estimation and inference in small samples than the joint structural92

equation modeling (SEM) approach.93

Multiple-Group Joint SEM94

In behavioral sciences, joint SEM modeling is the recommended approach for incorporating95

imperfect measurement when analyzing relations among latent variables (e.g., Cole & Preacher, 2014). In96

SEM, theoretical constructs, such as depression and cognitive ability, are represented as latent variables,97

ηs, and each of them is measured by one or more observed indicators. When both the measurement98

(between ηs and their indicators) and the structural (among the ηs) models are correctly specified, joint99

SEM modeling with maximum likelihood estimation yields consistent and asymptotically efficient100
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structural coefficient estimates (e.g., Bollen, 1989). In the case of partial invariance, where some101

measurement parameters differ across a grouping variable 𝐺, one common approach is to use a102

multiple-group analysis that places equality constraints on only those measurement parameters found103

invariant across groups. Specifically, denote the measurement model among 𝑝 observed indicators, y, and 𝑞104

latent variables, 𝛈, as 𝑓 (y|𝛈, 𝛚) with measurement parameters 𝛚, and assume that the structural model105

can be characterized as a linear model. Assuming that each observation 𝑖 = 1, . . . , 𝑛𝑔 in group 𝑔 is106

independent, the multiple-group joint SEM can be described by the model107

Measurement: 𝑓 (y𝑖𝑔 |𝛈𝑖𝑔, 𝛚𝑔)

Structural: 𝛈𝑖𝑔 = 𝛂𝑔 + B𝛈𝑖𝑔 + 𝛇𝑖𝑔

, (1)

with equality constraints on a subset of 𝛚𝑔 across some groups 𝑔1, 𝑔2, and so forth. In the structural108

model, 𝛂 contains the 𝑞 latent regression intercepts, B is a 𝑞 × 𝑞 matrix of structural coefficients, and 𝛇𝑖𝑔 is109

a vector of disturbances with the standard assumption E(𝛇𝑖𝑔) = 0.1110

As an example, consider a model with y = [𝑦1, . . . , 𝑦6]⊤ and 𝛈 = [η𝑋, η2], where η2 is observed111

(similar to Figure 1). Assuming a linear factor model linking y and η1 such that 𝑦 𝑗 = ν 𝑗 + λ 𝑗 η1 + ε 𝑗 with112

ε ∼ 𝑁 (0,Θ) and 𝑗 indexing indicators, the measurement parameters are 𝛚 = (𝛎, 𝛌,Θ) and there is one113

structural path coefficient in B =


0 0

β1 0

 . When there are multiple groups, a prerequisite to compare114

structural coefficients (e.g., 𝛂 and B) across groups is that 𝛚 is sufficiently invariant, which can be115

examined by analyzing factorial invariance (Meredith, 1964)—measurement invariance under a factor116

model—of the items. If the items all have the same number of underlying factors (one in this example),117

and the pattern of how the items and the underlying factors are linked is the same across groups, the118

condition of configural invariance (Horn & McArdle, 1992; Meredith, 1964) is met. Furthermore, the items119

are considered metric invariant if 𝛌1 = 𝛌2, scalar invariant if, additionally, 𝛎1 = 𝛎2, and strict invariant if120

also Θ1 = Θ2 so that all measurement parameters are equal (e.g., Widaman & Reise, 1997). If some121

elements of 𝛚 are not invariant across groups, a partial invariance model should be specified so that only122

the invariant subset of 𝛚 is constrained equal across groups in the joint SEM approach (e.g., Byrne et al.,123

1989; Hsiao & Lai, 2018).124

Although the multiple-group joint SEM approach (hereafter JSEM) is very flexible, as discussed in125

the previous literature (e.g., Croon, 2002; Devlieger et al., 2016; M. H. C. Lai & Hsiao, 2021; McNeish &126

1 Note that we could allow B to be group-specific to represent 𝐺× 𝛈 interactions; however, based on our small literature
review (described later in the paper), researchers rarely specified such an interaction, so in the current paper we mainly focus
on analyses with a common B.
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Wolf, 2020; Rosseel & Loh, 2021), it does present several challenges, both in terms of computation and127

usage in practice. First, JSEM requires specifying a large model even when the structural model is128

relatively small. Consider a structural model with three latent constructs, each measured by 10 observed129

indicators, resulting in a total of 30 observed variables. Although a researcher may only be interested in130

three or four structural coefficients, JSEM would need estimations of hundreds of measurement parameters.131

Not only is the large model size difficult for researchers to keep track of and identify misfits, but it also132

makes JSEM more prone to convergence failures in optimization algorithms and inflated Type I error rates133

of the structural coefficients (Devlieger & Rosseel, 2017; Kelcey, 2019; M. H. C. Lai & Hsiao, 2021; Rosseel,134

2020). Second, for models not assuming a multivariate normal likelihood function, such as when the135

observed indicators are ordinal or categorical, estimating JSEM models (e.g., with numerical integration) is136

computationally demanding and not feasible even with only a few latent dimensions (Pritikin et al., 2018).137

Third, with joint modeling, misspecifications in the measurement models can affect parameter estimates in138

the structural model. Compared to multistage methods like 2S-PA, structural parameters with JSEM are139

more susceptible to misspecifications in the measurement models (Devlieger & Rosseel, 2017; M. H. C. Lai140

& Hsiao, 2021). The other side of the same coin—that misspecifications in the structural model can affect141

parameter estimates in the measurement models—is equally troubling. It leads to interpretational142

confounding (Bollen & Maydeu-Olivares, 2007; Burt, 1976; Levy, 2017), where the operationalization of the143

latent construct is different in different structural models, even with the same data.144

A Brief Review on the Use of Joint Modeling Following Invariance Evaluation145

Given the conceptual and computational challenges of SEM, researchers often use composite or146

factor scores to analyze structural models, even after they conduct extensive psychometric explorations147

such as measurement invariance analysis. For example, in a review of articles published in the Journal of148

Applied Psychology and Personality and Individual Differences in 2020, we identified 30 articles that either149

tested measurement invariance (𝑛 = 26) or cited external evidence for measurement invariance (𝑛 = 4).150

Among them, 26 articles concluded with configural (𝑛 = 2), metric (𝑛 = 13), scalar (𝑛 = 10), or strict (𝑛 =151

1) invariance; the remaining articles either reported noninvariance (𝑛 = 3) or provided insufficient152

information about test results (𝑛 = 1).153

Even though many of the articles we reviewed already performed invariance analyses, the majority154

(𝑛 = 16) still used composite scores for subsequent statistical analyses, while others used either factor155

scores (𝑛 = 1) or JSEM (𝑛 = 8). For the articles that used composite scores, only four supported scalar or156

strict invariance (i.e., the minimum requirement for composite scores to be comparable across groups;157

Putnick & Bornstein, 2016), whereas eight established only metric invariance, two showed only configural158
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invariance, and two concluded with measurement noninvariance.159

When comparing the sample sizes of articles using different methods, those using composite scores160

had a median of two groups with median 𝑛 = 377 per group, whereas the ones using JSEM had a median161

of three groups with median 𝑛 = 451 per group. While JSEM requires a relatively large sample size (e.g., 𝑛162

> 500 or 2000; Rosseel, 2020), studies with fewer samples might adopt alternative methods for group163

comparisons or regression analyses.164

Thus, this brief review shows that researchers commonly used composite scores in subsequent165

analyses, even when measurement invariance was violated. Ignoring violations of measurement invariance166

and imperfect reliability may result in biased statistical results. Therefore, alternative methods that are167

easy to specify while still producing consistent estimates are desirable. The current paper will focus on168

2S-PA as one of those methods.169

Two-Stage Path Analysis (2S-PA) With Definition Variables170

Building on the literature of errors-in-variables models (e.g., Carroll et al., 2006; Meijer et al.,171

2021), M. H. C. Lai and Hsiao (2021) proposed 2S-PA as an alternative to JSEM. In the first stage of172

2S-PA, researchers obtain factor scores for each observation 𝑖 on each latent construct 𝑚, η̃𝑚𝑖, and their173

estimated reliability, ρ̃η̃𝑚𝑖. In addition, in order to account for noninvariant measurement parameters, the174

factor scores should be obtained from partial invariance models where η is calibrated to be on the same175

metric. Unlike JSEM, where the same software and estimation method are used for all measurement and176

structural models, with 2S-PA, one can use different software for obtaining factor scores for different177

constructs, as long as consistent estimates of factor score reliability can be obtained for each observation.178

For example, one can use a specialized item response model for factor scores of one construct and a179

network model for centrality scores for another construct, as long as they are appropriate models to180

operationalize variables in their hypothesized model. In the second stage of 2S-PA, full-information181

maximum likelihood is used to estimate the structural model:182

Measurement: �̃�𝑖 = Λ
∗
𝑖 𝛈

∗
𝑖 + ε∗𝑖

Structural: 𝛈∗
𝑖 = 𝛂∗ + B∗𝛈∗

𝑖 + 𝛇∗𝑖

, (2)

where Λ∗
𝑖

is a loading matrix and is assumed diagonal when each factor score variable is an indicator of only183

one latent variable, 𝛇∗𝑖 ∼ 𝑁 (0,Ψ∗) and ε∗
𝑖
∼ 𝑁 (0,Θ∗

𝑖 ). When the factor scores are calibrated to the same184

metric across individuals and groups, one can set Λ∗
𝑖

= I for identification; however, when they are not185

calibrated, Λ∗
𝑖
≠ I should be specified so that 𝛈∗ is on the same metric across groups, as discussed below for186
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composite scores and factor scores obtained with the regression method. The 2S-PA model further187

accounts for the unreliability of η̃𝑚 by setting the ratio of true score variance (λ∗2
𝑚𝑖 Var[η∗𝑚]) and the total188

variance (i.e., true score variance + error variance) to the reliability value estimated in stage 1, such that189

λ∗2
𝑚𝑖 Var(η∗𝑚)

θ∗
𝑚𝑖

+ λ∗2
𝑚𝑖 Var(η∗𝑚)

= ρ̃η̃𝑚𝑖 . (3)

Note that we use η∗ in equation (2), as they can be on a different metric than η in the first stage190

estimation; thus, the unstandardized parameter estimates from JSEM and 2S-PA are generally not191

comparable. M. H. C. Lai and Hsiao (2021) showed that in single-group analyses, one should compare the192

standardized coefficients; as discussed later, when the analyses involve multiple groups, additional193

adjustments on the standardized coefficients are needed to place the parameter estimates from194

multiple-group JSEM and single-group 2S-PA on approximately the same unit.195

The constraints in 2S-PA are similar to those discussed in the reliability adjustment literature196

(e.g., Hsiao et al., 2018; Meijer et al., 2021; Savalei, 2019), except that it allows the reliability to be197

observation-specific, which accommodates ordered categorical items and violations of strict factorial198

invariance. It thus requires software programs that support observation-specific constraint variables, such199

as OpenMx (via definition variables; Neale et al., 2016) and Mplus (via constraint variables; Muthén &200

Muthén, 1998–2017).201

2S-PA With Various Estimated Scores202

Below, we consider how 2S-PA can be applied to three commonly computed scores for continuous203

indicators under a factor model: regression factor scores (Thomson, 1935), Bartlett factor scores (Bartlett,204

1937), and sum scores. In each case, the estimated scores are linear combinations of the observed item205

scores such that η̃𝑖𝑔 = A𝑔y𝑖𝑔, where A𝑔 is the factor score matrix. For simplicity, we drop the mean206

structure in the discussion as mean differences across groups do not affect the path coefficients when the207

group membership is included as a covariate in the second stage analysis (Curran et al., 2018). We also208

assume that the items are unidimensional, so only one latent variable is involved. As the factor model209

implies y𝑖𝑔 = 𝛌𝑔η𝑖𝑔 + Y𝑖𝑔, we have η̃𝑖𝑔 = A𝑔𝛌𝑔η𝑖𝑔 + A𝑔Y𝑖𝑔 = λ∗𝑔η𝑖𝑔 + ε∗
𝑖
.210

As such, the reliability of the estimated scores is (A𝑔𝛌𝑔)2ψ𝑔/[(A𝑔𝛌𝑔)2ψ𝑔 + A𝑔Θ𝑔A⊤
𝑔 ], where ψ𝑔 is211

the variance of η𝑔 and Θ𝑔 is the unique factor covariance matrix. When factorial invariance does not hold212

across groups, generally A𝑔𝛌𝑔 is different for different 𝑔s, so the estimated scores are on different metrics213

across groups. Therefore, the second stage of 2S-PA needs to incorporate information of A𝑔𝛌𝑔 when setting214

the loading of η̃ on η∗ so that η∗ is calibrated to the same metric.215
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As shown in Table 1, for both the regression factor scores and the sum scores, the loading (λ∗) of η̃216

on η depends on 𝛌𝑔, so the scores are on different metrics when metric invariance is violated. Therefore, in217

2S-PA, λ∗ needs to be group-specific by setting the loading parameter as a definition/constraint variable.218

On the other hand, the Bartlett scores are calibrated to be on the same unit as the latent variable with219

λ∗ = 1, so group-specific loading is not needed for 2S-PA. Also, regression scores are shrinkage estimates,220

meaning they have a smaller variance when reliability is low (note that λ∗ = ρη̃), whereas Bartlett scores221

are not. For sum scores, ρη̃ is the familiar ω reliability for composite scores (McDonald, 1999; Raykov,222

1997). In Study 1, we evaluate the performance of 2S-PA with these three types of estimated scores for223

continuous items.224

For categorical items, sum scores are generally not appropriate as the items are not intervally225

scaled. As discussed in Hoshino and Bentler (2013), the expected a posteriori (EAP) scores are analogous226

to the regression factor scores, whereas maximum likelihood estimates of η are analogous to the Bartlett227

factor scores.228

Within-Group Standardization and Grand Standardization229

Structural parameter estimates depend on the assigned metrics of the latent variables. Because230

JSEM and 2S-PA use observed variables on different units, the unstandardized parameter estimates are231

generally not comparable. One solution is to look at the standardized coefficients, namely, the transformed232

B coefficients when all ηs have unity variance. However, in a multiple-group analysis (e.g., multiple-group233

SEM), coefficients are often standardized using the within-group SD for η𝑚 (ση𝑚𝑔), whereas in single-group234

analysis with groups pooled into one analytic sample (e.g., in 2S-PA), coefficients are standardized using235

the grand, or total, SD (ση𝑚). Let μη𝑚1, . . . , μη𝑚𝐺 be the latent means of η𝑚 across groups and 𝑛1, . . . , 𝑛𝐺236

be the respective sample sizes with
∑𝐺

𝑔=1 𝑛𝑔 = 𝑁, then one can show that the grand SD is related to the237

within-group SD in the equation (dropping the η𝑚 subscript for better readability)238

σ2 =
1
𝑁

𝐺∑︁
𝑔=1

𝑛𝑔 [σ2
𝑔 + (μ𝑔 − μ)2], (4)

where μ =
∑𝐺

𝑔=1 𝑛𝑔μ𝑔/𝑁 is the grand mean. While researchers may prefer one way of standardization or the239

other in applied research, in simulation studies or research syntheses where different methods are240

compared, the coefficients are comparable only when converted to the same SD unit.241
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Current Studies242

In the remainder of the current paper, we report two simulation studies comparing JSEM and243

2S-PA in the presence of partial invariance. In Study 1, we use a simple latent regression model in which244

only the predictor contains measurement error and partial invariance. In Study 2, we use a more complex245

mediation model involving three constructs, wherein both the mediator and the outcome contain246

measurement error and partial invariance. In addition, Study 2 also involves data with binary indicators.247

The two simulation studies cover balanced and unbalanced sample sizes across two groups. We then248

provide an example using data from a published paper illustrating how researchers can use 2S-PA following249

evidence of partial invariance. We conclude with some future research directions for 2S-PA.250

Study 1251

In Study 1, we compare two approaches without reliability adjustment: sum-score path analysis252

(PA) and factor score path analysis (FS-PA, with regression factor scores), with five approaches that adjust253

for unreliability: Croon’s correction (Croon), JSEM, and three 2S-PA methods, for estimating a regression254

coefficient. We examined three variations of 2S-PA that use (a) regression factor scores, (b) Bartlett factor255

scores, and (c) sum scores. In the data generating model, the latent predictor, 𝑋, is measured by six256

indicators with partial invariance across two groups (𝐺 = 1 and 2). We generate data with four levels of257

sample size for Group 1 (𝑛1 = 50, 100, 500, 1000), and the data is either balanced (𝑛2 = 𝑛1) or unbalanced258

(𝑛2 = 0.6𝑛1). The average loading for Group 1 has two levels to represent situations of low reliability259

(average loading = 0.7; composite reliability = .49 and .61 for Groups 1 and 2) and moderate reliability260

(average loading = 1.0; composite reliability = .71 and .77 for Groups 1 and 2).2 Figure 1 shows the data261

generating values of the model parameters, where Group 2 has larger loadings on items 2 and 5. In262

addition, items 4 and 5 have different intercepts, and items 4 and 6 have different unique variances. The263

two groups also have different means and variances of η𝑋. To resemble minor misspecification in the264

measurement model, we follow the suggestion by MacCallum and Tucker (1991) to add minor common265

variances among the indicators, which results in covariances of magnitudes between -0.356 and 0.356 (i.e.,266

10% of the observed indicator variance in Group 1). For each condition, we simulated 2,500 replications267

using R.268

The unstandardized regression coefficient 𝑏1 is manipulated to either 0 or 0.5 for both groups (i.e.,269

no η𝑋 × 𝐺 interaction). To account for the above-mentioned metric incomparability issue in the estimated270

coefficients, we obtained the regression coefficient with η𝑋 standardized using the grand SD of 𝑋. When 𝑏1271

2 The composite reliability for sum scores is computed using the same formula as presented in Table 1 (see also Raykov, 1997).
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= 0.5, the standardized coefficient is β1 ≈ 0.54 (unbalanced samples) and 0.56 (balanced samples), whereas272

when 𝑏1 = 0, β1 is also zero. All data generation is carried out in R. The package OpenMx (Neale et al.,273

2016) is used to obtain the grand-standardized regression coefficient using composite scores of 𝑋 (i.e., PA,274

which ignores noninvariance and unreliability), factor scores of 𝑋 (i.e., FS-PA, which adjusts for partial275

invariance but not unreliability), Croon’s correction (see supplemental material for implementation276

details), JSEM, and 2S-PA methods. For each condition and method, we evaluated the raw bias and root277

mean squared error (RMSE) in estimating β1, as well as the relative standard error bias and the coverage278

of the 95% confidence interval (CI). The full R script for the simulation can be found in the supplemental279

materials (https://github.com/marklhc/2spa-inv-supp/).280

For all conditions, the convergence rates were 99% or above; we only observed some estimation281

issues in small-sample, low-reliability conditions for JSEM and 2S-PA; in some replications, there were282

problems obtaining likelihood-based CI for 2S-PA. As shown in Tables 2 and 3, the impact of unequal 𝑛s283

across groups was small. The results for PA and FS-PA were highly similar, except that FS-PA had higher284

RMSEs and larger SE biases in small-sample, low-reliability conditions. Croon’s correction performed285

slightly worse than 2S-PA methods for most conditions in terms of bias. When 𝑏1 = β1 (standardized286

coefficient) = 0, the estimates for all methods were essentially unbiased (with |bias| ≤ 0.01). When 𝑏1 = 0287

and β1 = 0, JSEM and 2S-PA with sum scores (no bigger than 0.02 in absolute values) had the least bias,288

while PA and FS-PA generated larger biases up to -0.15. 2S-PA with regression scores and Bartlett scores289

showed downward bias in small samples (-0.07 for regression scores; -0.06 for Bartlett scores), but improved290

with larger samples. For RMSE, PA performed the best when estimating a zero coefficient as there was no291

attenuation due to unreliability; 2S-PA methods performed slightly better than JSEM for estimating a zero292

coefficient and were virtually identical to JSEM across other conditions. In small-sample, low-reliability293

conditions, 2S-PA with sum scores performed best in terms of RMSE.294

When the reliability was relatively high, all methods gave acceptable standard errors, and all295

methods except PA and FS-PA had acceptable CI coverage; the latter two had suboptimal coverage when296

β1 ≠ 0, because their estimated coefficients were attenuated due to unreliability. When reliability was low,297

the standard errors with JSEM were severely underestimated (up to -71.91%), and coverage was298

suboptimal (< 92%) when the sample size was small; FS-PA and 2S-PA with regression and with Bartlett299

scores had substantial bias in the estimated standard errors and undercoverage for nonzero true coefficients300

in small samples, probably due to some instability in factor score estimation; Croon’s correction performed301

better than 2S-PA in terms of SE bias, but had worse coverage rates for low-reliability, small-sample302

conditions. Overall, 2S-PA with sum scores performed well for all conditions; JSEM and 2S-PA were303

https://github.com/marklhc/2spa-inv-supp/
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similar and performed best for conditions with large sample sizes and relatively high reliability. When304

comparing 2S-PA methods with regression scores and with Bartlett scores, they were generally similar,305

with the former giving slightly better coverage rates overall.306

The results of Study 1 show that 2S-PA and JSEM are both effective in accounting for both partial307

invariance and unreliability when sample sizes are large or when score reliability is above .70. Also, 2S-PA308

seems to give more efficient estimates and control the Type I error rate better. In small-sample or309

low-reliability situations with continuous indicators, Study 1 shows that 2S-PA with sum scores can be310

used for valid inferences and better estimation efficiency. The difference between 2S-PA and JSEM may be311

more prominent with more complex models, as shown in Study 2.312

Study 2313

As 2S-PA fits a simpler model in each step, compared to JSEM, we expect that it shows more314

benefits in a more complex model, particularly when some of the indicators for the latent variables are315

categorical. In Study 2, we consider a mediation model with a binary treatment variable 𝑋 and with both316

the mediator η𝑀 and the outcome η𝑌 variables measured with errors. Both η𝑀 and η𝑌 showed317

noninvariance with respect to a grouping variable 𝐺. As shown in Figure 2, there were six indicators for η𝑀318

and 16 indicators for η𝑌 . For the indicators of η𝑀 , the population values of loadings, intercepts, and unique319

variances were the same as those in the high-reliability condition in Study 1. For the indicators of η𝑌 , we320

simulated them to be binary items following a 2-parameter normal ogive item response model such that321

𝑦∗𝑗 = λ𝑌 𝑗 η𝑌 + ε𝑌 𝑗

𝑦 𝑗 =


1 𝑦∗

𝑗
> τ 𝑗

0 otherwise
,

with ε𝑌 𝑗 ∼ 𝑁 (0, 1); λs are the loading parameters analogous to those in the factor model, and τs are the322

thresholds. The population values of the measurement parameters were taken from a real-data abstract323

reasoning test example in Embretson and Reise (2000, Table 4.2, p. 69), with loadings between 0.465 to324

0.958 and item difficulties between -2.118 to 1.061 for Group 1. Items 1, 5, 9 were simulated to have325

noninvariant loadings (magnitude = 0.118 to 0.294), and items 2, 5, 8 were simulated to have noninvariant326

thresholds (magnitude = 0.3 to 0.5). The exact values can be found in the simulation code. The test327

information for the η𝑌 indicators was above 1.81 for η𝑌 between -2 and 2, with peak information of 4.29 for328

Group 1; it was similar for Group 2 (above 1.74 for η𝑌 ∈ [-2, 2], peak = 4.42).329

Similar to Study 1, we added minor common variances among the indicators of η𝑀 and η𝑌 ,330
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resulting in unique correlations in the range [-0.1, 0.1]. The sample sizes were equal across the two levels of331

𝐺, with conditions of 𝑛 = 50, 100, 300, 1,000 per group.332

For both groups, we had the following structural model:333

η𝑀 = α𝑀 + β1𝑋 + ζ𝑀

η𝑌 = α𝑌 + β2𝑋 + β3η𝑀 + ζ𝑌 .

We allowed α𝑀 and α𝑌 to be group-specific to represent main effects of 𝐺 on η𝑀 and η𝑌 , but there were no334

group-related interactions. The population values were α𝑀 = 0 and 0.2, and α𝑌 = 0 and 0.3, respectively335

for 𝐺 = 1 and 2; also, for all conditions, we fixed β2 = 0.3. There were four conditions for the values β1336

and β3, including (a) β1 = β3 = 0, (b) β1 = 0.5, β3 = 0, (c) β1 = 0, β3 = 0.3, and (d) β1 = 0.5, β3 = 0.3.337

Note that the indirect effect of 𝑋 on η𝑌 was β1β3 = 0 for (a), (b), and (c), and was 0.15 for (d). The values338

of Var(ζ𝑀 ) and Var(ζ𝑌 ) were chosen such that the grand variances of η𝑀 and η𝑌 are both one, so that the339

grand-standardized coefficients (i.e., using the total SD without group memberships) and the340

unstandardized coefficients were the same.341

We compared multiple-group JSEM, path analysis with factor scores (FS-PA; without reliability342

adjustment), and 2S-PA. For JSEM, we used the lavaan package (Rosseel, 2012) in R to fit a full SEM343

model with partial invariance using all indicators, with identification constraints such that the grand344

variances of η𝑀 and η𝑌 were unity. Diagonally weighted least squares (DWLS) was used as the model345

included both continuous and binary indicators. For FS-PA and 2S-PA, we first used lavaan and a346

multiple-group CFA (with maximum likelihood estimation) to obtain the regression factor scores for η𝑀 ,347

denoted as η̃𝑀 , and then used the mirt R package (Chalmers, 2012) and a multiple-group two-parameter348

logistic item response model (with maximum likelihood estimation) to obtain the expected a posteriori349

(EAP) scores for η𝑌 , denoted as η̃𝑌 . For 2S-PA, reliability estimates, ρ̃η̃𝑌 𝑖 and ρ̃η̃𝑀 𝑖, were computed using350

1 − SE2 ( η̃𝑖)/Var(η), where SE ( η̃𝑖) is the case-specific standard error of the EAP score, available from mirt.351

Similar to multiple-group SEM, in the item response models, the loadings and thresholds were constrained352

equal for the invariant items but free for the noninvariant items, so the latent factor was on the same353

metric. In both JSEM and the first stages of FS-PA and 2S-PA, we specified the correct partial invariance354

models (but without the unique covariances). We deliberately used two separate programs for 2S-PA to355

demonstrate its flexibility. In the second stage, we used OpenMx with the measurement model356

η̃𝑀𝑖 = η𝑀𝑖 + 𝑒 η̃𝑀𝑖

η̃𝑌𝑖 = η𝑌𝑖 + 𝑒 η̃𝑌𝑖

,
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the constraints357

ρ̃η̃𝑀 𝑖 Var(𝑒 η̃𝑀𝑖
) = (1 − ρ̃η̃𝑀 𝑖) Var(η𝑀 )

ρ̃η̃𝑌 𝑖 Var(𝑒 η̃𝑌𝑖
) = (1 − ρ̃η̃𝑌 𝑖) Var(η𝑌 )

,

and the structural model358

η𝑀 = α𝑀 + α1𝐺 + β1𝑋 + ζ𝑀

η𝑌 = α𝑌 + α2𝐺 + β2𝑋 + β3η𝑀 + ζ𝑌 .

The inclusion of α1𝐺 and α2𝐺 accounted for the intercept differences across groups.359

For all three approaches, we obtained the standardized coefficients for the β1, β2, β3 paths, as well360

as the product term β1β3 (i.e., the standardized indirect effect). With JSEM, the corresponding 95% CIs361

were obtained using the delta method for β1 to β3, and the Monte Carlo method (MacKinnon et al., 2004)362

for β1β3; with 2S-PA, CIs were obtained using the profile likelihood method (Pek & Wu, 2015). The363

analytic approaches were compared based on the convergence rate, bias, RMSE, and 95% CI coverage. We364

also evaluated the statistical power based on the proportion of replications where the 95% CI excludes zero365

for conditions with nonzero indirect effects.366

Results367

Convergence368

Convergence was 100% for all conditions with FS-PA. When 𝑛 = 50, convergence was substantially369

better for 2S-PA (89.80%) than for JSEM (8.29%). When 𝑛 ≥ 100, 2S-PA had 100% convergence, but370

JSEM still had convergence issues (32.56%). JSEM had 82.49% convergence when 𝑛 = 300, and 99.66%371

when 𝑛 = 1,000. The main reason for nonconvergence in 2S-PA was failures in computing factor scores or372

the corresponding reliability in the first stage due to negative latent or error variance estimates, whereas it373

was empirical unidentifiability due to near-perfect or near-zero associations among indicators for JSEM.374

Bias375

Figure 3 shows the bias in estimating the βs and the indirect effect. All three methods estimated376

coefficients that are truly zero with little bias. When the true coefficients were nonzero, FS-PA, ignoring377

measurement error, produced biased estimates for virtually all coefficients (bias between -0.117 and 0.014).378

Both 2S-PA and JSEM performed better with a larger 𝑛; with a small 𝑛 = 50, 2S-PA (bias between -0.066379

and -0.026) generally performed better than JSEM (bias between -0.240 and 0.116), especially for β2 and380

β3.381
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RMSE382

Figure 4 shows the RMSE of the different methods, which combines both bias and (in)efficiency of383

the estimates. The RMSEs for FS-PA were the smallest for small-sample conditions, especially when there384

could be little attenuation due to measurement error; however, FS-PA performed worst in larger samples385

for nonzero coefficients. For all of the β coefficients and the indirect effect, 2S-PA generally provided better386

RMSEs than JSEM, especially in small samples. When 𝑛 reaches 300, the RMSEs were comparable for387

2S-PA and JSEM.388

Coverage389

Figure 5 shows the coverage of 95% CI for 2S-PA and JSEM; coverage for FS-PA was bad for390

nonzero coefficients due to parameter bias (close to 0.00 for β3 and β1β3 when 𝑛 = 1,000), and was391

excluded from the graph. 2S-PA showed coverage close to 95% for almost all conditions and parameters,392

except for some undercoverage when estimating zero β3 in small samples. JSEM generally had worse393

coverage than 2S-PA, which also corresponded to severely inflated Type I error rates (i.e., 1 - coverage rate394

when true coefficient = 0) of up to 0.34 when 𝑛 = 50 for β3, whereas 2S-PA had Type I error rates < 0.06395

for all conditions and coefficients.396

Power397

Figure 6 shows the empirical power, calculated as the rates in which the 95% CI excluded zero398

when making inferences on coefficients that are truly nonzero. Power was generally similar for FS-PA and399

2S-PA, while JSEM had higher power for β1, β2, and β3 with small samples (but at the cost of higher Type400

I error rates). When 𝑛 ≥ 100, the empirical power was similar for all three approaches.401

In summary, with a more complex data generating model, we found 2S-PA to have substantially402

fewer convergence issues than JSEM, and it mostly outperforms JSEM in parameter estimation and403

inference, especially in small samples.404

Empirical Example405

In this section, we demonstrate 2S-PA as well as PA, FS-PA, and the JSEM approaches, using406

empirical data made publicly available by Lui (2019) on the Open Science Framework407

(https://osf.io/93qpt/). Data were collected in 2018 from 1,148 undergraduate students, aged 18 or older,408

in a private university. Lui evaluated measurement invariance of the College Life Alcohol Salience Scale409

(CLASS; Osberg et al., 2010), which measures individuals’ college-related alcohol beliefs, across different410

sociodemographic subgroups, including ethnicity. Subsequently, CLASS was used to predict students’411

https://osf.io/93qpt/


ADJUSTING PARTIAL INVARIANCE WITH 2S-PA 16

alcohol consumption and drinking problems, measured by the Alcohol Use Disorders Identification Test412

(AUDIT; Saunders et al., 1993). While meeting scalar invariance across most grouping variables, CLASS413

showed partial scalar invariance across ethnicity. For pedagogical purposes, we focus on analyzing the414

relationship between college-related alcohol beliefs and drinking problems across ethnic groups in this415

demonstration.416

CLASS contains fifteen 5-point Likert items (1 = strongly disagree and 5 = strongly agree). Seven417

of the ten items of AUDIT measure negative alcohol-related consequences, i.e., drinking problems, on a418

variety of 3-to-5-point scales.3 Study participants were domestic students of European American (44.9%),419

Asian American (19.9%), African American (10.3%), Latinx American (16.7%), and mixed or other ethnic420

backgrounds (8.3%).421

We assess configural, metric, and scalar invariance of CLASS and AUDIT, respectively, using422

lavaan (Rosseel, 2012) with maximum likelihood estimation. If a more constrained model has a worse fit423

than a less constrained model, indicating invariance violations, we use sequential specification search (Yoon424

& Kim, 2014) to identify and free noninvariant parameters, until arriving at a partial invariance model.425

After establishing scalar or partial scalar invariance, we predict drinking problems with college alcohol426

beliefs using five approaches: (a) PA, (b) FS-PA, (c) JSEM, and (d) 2S-PA with regression scores, and (e)427

2S-PA with Bartlett scores. With (a), we model the relationship between CLASS and AUDIT with their428

sum scores and ethnicity as a covariate. Sum score PA does not account for measurement noninvariance429

nor unreliability. With (b), we first obtain the regression factor scores of CLASS and AUDIT from a430

multigroup CFA. We then use the regression factor scores in a path model with ethnicity as a covariate.431

Measurement noninvariance, if identified, is adjusted in the first step, whereas measurement unreliability is432

not accounted for in FS-PA. With (c), we perform multiple-group SEM that includes a structural path433

between the two latent factors, with scalar or partial scalar models for CLASS and AUDIT. Thus, JSEM434

accounts for both measurement unreliability and noninvariance in one model. With (d) and (e), in the first435

stage, we obtain the factor scores from the scalar or partial scalar models and compute the reliability of the436

factor scores as shown in Table 1. Partial invariance is accounted for in the first stage. In the second stage,437

we treated the factor scores as indicators of the latent variables with known reliability. We compare the438

standardized path coefficients using the grand SD among the five approaches.439

Details of the measurement invariance test results are provided in the supplemental materials. We440

replicated the findings of Lui (2019) for CLASS and concluded with a partial scalar model by freeing 10441

3 As reported in Lui (2019), items 4 to 10 of AUDIT measure drinking problems; items 4, 6, and 8 are on a scale of 0-4, items
5 and 7 are on a scale of 0-3, and items 9 and 10 consists of three response categories (0, 2, and 4).
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intercept equality constraints across four ethnic groups (European American, Asian American, African442

American, Latinx American). For AUDIT, we first established partial metric invariance by freeing four443

loading equality constraints and concluded with a partial scalar model by additionally freeing four intercept444

equality constraints. The reliability of the composite and factor scores was similarly high for CLASS (ρ̃ =445

.92, .92, .87, .91) and satisfactory for AUDIT (ρ̃ = .79, .79, .87, .78), using formulas from Table 1.446

Consistent with the results in Lui (2019), we found that higher college alcohol beliefs predicted447

more drinking problems in all three approaches (all 𝑝s < .001). Among the five approaches, FS-PA yielded448

the smallest standardized coefficient of AUDIT on CLASS (β̂ = 0.49, 95% CI [0.44, 0.54]), followed by449

sum-score PA (β̂ = 0.54, 95% CI [0.49, 0.58]). 2S-PA with regression scores (β̂ = 0.59, 95% CI [0.53, 0.65])450

and 2S-PA with Bartlett scores (β̂ = 0.59, 95% CI [0.52, 0.65]) resulted in a similar standardized path451

coefficient as JSEM (β̂ = 0.60, 95% CI [0.54, 0.65]).452

As shown in this example, consistent with our simulation results, using composite or factor scores453

without adjusting for unreliability resulted in a smaller standardized path coefficient. On the other hand,454

both 2S-PA and JSEM yielded a larger coefficient as well as wider CIs.455

Discussion456

In behavioral sciences, measured variables are prone to random and systematic errors. To account457

for these errors, the methodological literature generally regards joint modeling of measurement and458

structural models as the gold standard. While joint modeling is flexible, it is not always the most459

convenient for applied researchers, who usually treat construct operationalization and statistical analyses460

as two separate processes. Furthermore, joint modeling usually means dealing with many variables461

simultaneously, even when researchers have a relatively simple conceptual model, which presents many462

computational and practical challenges. As a result, while joint modeling is a gold standard in theory,463

applied researchers still use composite scores when analyzing their conceptual models in practice.464

A salient example of the above problem, which is also the focus of the current paper, can be found465

in analyses involving composite scores that are potentially noninvariant across groups. While466

methodological guidelines are clear that joint modeling should be used if measures show only partial467

invariance across groups, from our observation and a small literature review, applied researchers continue468

to use composite scores following measurement invariance analysis. However, as is well known in the469

methodological literature, using composite scores ignores random and systematic errors and thus leads to470

biased parameter estimates and invalid inferences.471

As an alternative to joint SEM modeling, we suggest that researchers use 2S-PA to analyze their472
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conceptual models by obtaining factor scores and then adjusting for measurement errors using estimates of473

observation-specific reliability of those factor scores. We recommend using 2S-PA with factor scores over474

JSEM in analysis with discrete indicators, moderate sample size (< 1,000), and moderate reliability of the475

factor scores (similar to the values in our Study 2). For analysis with continuous indicators, we recommend476

using 2S-PA with sum scores when the sample size is small (e.g., < 400 per group) and when the composite477

reliability is low (e.g., < .70 in any groups). Results of two simulation studies show that 2S-PA gives478

comparable estimates as JSEM in relatively simple models and large sample sizes, has better control of479

Type I error rates, and has substantially fewer convergence problems in complex models with categorical480

indicators. While the most complex model in our studies only has three latent variables, we expect the481

advantage of 2S-PA over joint modeling to be even more striking for models with more latent variables.482

Although the current paper focuses solely on applying 2S-PA for adjusted inferences following483

multiple-group measurement invariance analyses, we also want to acknowledge other developed two-stage484

approaches that tackle similar problems. For example, when all indicators are continuous with485

homogeneous measurement error variances within a group, the within-group reliability of composite or486

factor scores is constant. One can thus use a multiple-group version of the reliability adjustment method487

discussed in Hsiao et al. (2018) and Savalei (2019) in any SEM software without constraint/definition488

variables, which is similar to 2S-PA with composite scores in Study 1 but uses a multi-group model.489

Another promising line of research is the Structural After Measurement (SAM) approach (Rosseel & Loh,490

2021). With SAM, one obtains measurement parameter estimates (e.g., loadings and intercepts, instead of491

factor scores) from separate measurement models of the latent constructs and uses those measurement492

parameters to obtain corrected estimates of structural coefficients. It subsumes two-stage methods such as493

factor score regression and path analysis with Croon (2002)’s corrections and was recently added to the R494

package lavaan. At the time of writing, however, SAM supports neither equality constraints of structural495

coefficients across groups nor analyses with categorical indicators, so we could not include it for496

comparisons in our simulation studies. As 2S-PA, SAM, and other two-stage methods continue to evolve,497

future research can compare and integrate these approaches.498

When using 2S-PA and other two-stage estimation methods, one consideration is whether one can499

obtain factor scores in separate measurement models for different constructs in the structural model. In the500

current paper, as in M. H. C. Lai and Hsiao (2021), we assume that the indicators follow an independent501

cluster structure, meaning that each indicator is directly associated with only one latent construct, which502

allows us to separate the measurement models into chunks. When there are cross-loadings or unique503

covariances between indicators of different constructs, the separation strategy is more robust as it reduces504
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the influence of omitting these crossed paths on the structural parameter estimation, compared to joint505

modeling that omits these crossed paths (M. H. C. Lai & Hsiao, 2021). However, neither the separation506

strategy nor omitting the cross paths in JSEM gives consistent structural parameter estimates (Hayes &507

Usami, 2020); instead, a theoretically valid approach is to use a JSEM model that correctly specifies the508

cross-loadings and unique covariances. An extension of 2S-PA for handling cross paths in measurement509

models would obtain factor scores from models with multiple latent constructs. In addition to computing510

case-specific reliability estimates, one also needs the case-specific loadings and covariances of the factor511

scores, and in the second stage, the factor scores are treated as indicators of the latent constructs but with512

loadings and error covariances constrained based on the values obtained in the first stage. Such an513

approach can be further explored in future studies.514

The current paper also shows that obtaining standardized coefficients for analyses involving515

multiple samples or subgroups is not trivial. When researchers use multiple-group analyses, popular SEM516

software such as OpenMx, Mplus, and lavaan performs standardization using the group-specific SDs.517

However, researchers can also use single-group analyses on the pooled data with dummy-coded grouping518

variables for group membership, as is the case in the 2S-PA methods we examined in this paper and in519

multiple-indicator multiple-cause models (e.g., Bauer, 2017). As we illustrated, the grand standard520

deviation is typically used to obtain standardized coefficients with the single-group approach, which is not521

comparable to those in multiple-group analyses. In our opinion, grand standardization is more appropriate522

as it preserves ordering and equality constraints on the unstandardized coefficients; standardization using523

group-specific SDs generally leads to unequal coefficients even when the path coefficients are constrained to524

equal in the model. An alternative is to use the pooled within-group SD, which also preserves ordering and525

equality constraints as each coefficient is scaled by the same number across groups.4 Both applied and526

methodological work should be mindful that different analytic approaches and standardization strategies527

may yield incomparable coefficients across studies, and future research can further explore the pros and528

cons of different standardization options.529

Given that 2S-PA is relatively new, many opportunities exist to address its current limitations in530

future studies. We highlight a few major ones here. First, in the current implementation of 2S-PA, the531

second-stage likelihood function assumes that the measurement error of the factor scores is normally532

distributed. Such an assumption holds when normality is assumed in the measurement models, as in factor533

analysis assuming normality; however, the sampling distribution of factor scores only approaches normality534

in large samples for measurement models with categorical indicators. Even though the current simulation535

4 This is commonly done when computing Cohen’s 𝑑 effect size.



ADJUSTING PARTIAL INVARIANCE WITH 2S-PA 20

results show 2S-PA to still perform reasonably well in small samples with categorical indicators, future536

research can (a) investigate situations with more complex first-stage measurement models, which may take537

larger samples to achieve asymptotic normality, and (b) extend the likelihood functions in the second stage538

of 2S-PA to accommodate nonnormality. One specific direction is to examine the performance of robust539

standard errors (e.g., with sandwich estimators or resampling methods; see K. Lai, 2019, for an overview).540

Second, while our simulation Study 2 only focused on expected a posteriori factor scores, future541

research should explore the performance of 2S-PA with other types of factor scores for categorical542

indicators (e.g., maximum a posteriori scores, maximum likelihood estimates, etc; see Estabrook & Neale,543

2013). Based on the theory of 2S-PA, the estimated scores should be consistent estimates for the latent544

variables, have an approximately normal sampling distribution, and have consistent estimates of sampling545

variability available. Third, although 2S-PA uses a simplified structural model, users still need to specify546

the required constraints to set the reliability of factor scores and obtain standardized coefficients. We are547

currently working on providing R scripts to automate some of these steps. Fourth, future research can548

extend 2S-PA to models researchers routinely use, such as models with latent interactions and multilevel549

models. Finally, for the second-stage estimation, alternative estimators, such as Bayesian, least squares,550

and generalized method of moments estimators, can be explored.551

In conclusion, the current paper shows how researchers can account for measurement552

quality—both measurement invariance and measurement reliability—using two-stage path analysis with553

each construct operationalized by a factor score variable. We show that two-stage path analysis can be a554

viable option, especially in small samples or when the number of measurement indicators is too big to deal555

with practically. While it is good to see more empirical research reporting on measurement invariance and556

reliability, we recommend researchers take the necessary next step: incorporate both partial invariance and557

unreliability in their main statistical analyses to obtain more valid results.558
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Table 1
Three Types of Estimated Scores and the Corresponding Reliability.

Estimated

scores Scoring matrix (A𝑔)

Loading on

latent variable

(λ∗𝑔) Var( η̃) Reliability (ρη̃)

Regression ψ𝑔𝛌
⊤
𝑔Σ−1

𝑔 ψ𝑔𝛌
⊤
𝑔Σ−1

𝑦𝑔 𝛌𝑔 ψ2
𝑔𝛌

⊤
𝑔Σ−1

𝑦𝑔 λ𝑔 ψ𝑔𝛌
⊤
𝑔Σ−1

𝑔 𝛌𝑔
Bartlett (𝛌⊤𝑔Θ−1

𝑔 𝛌𝑔)−1𝛌⊤𝑔Θ−1
𝑔 1 ψ + (𝛌⊤𝑔Θ−1

𝑔 𝛌𝑔)−1 ψ

ψ + (𝛌⊤𝑔Θ−1
𝑔 𝛌𝑔)−1

Sum

score

1⊤ 1⊤𝛌𝑔 (1⊤𝛌𝑔)2ψ + 1⊤Θ𝑔1
(1⊤𝛌𝑔)2ψ

(1⊤𝛌𝑔)2ψ + 1⊤Θ𝑔1
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Figure 1
Data generating model for Study 1.

Note. Group-specific parameter values are separated by a comma. The loading values shown in the graph are for the
moderate-reliability conditions; they were .45 to .95 for Group 1 in the low-reliability conditions.
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Figure 2
Data generating model for Study 2.
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Figure 3
Bias in Parameter Estimates for Study 2
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Note. Points represent values for all simulation conditions.
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Figure 4
Root Mean Squared Error (RMSE) of Parameter Estimates for Study 2

β3 β1 β3

β1 β2

50 100 300 1000 50 100 300 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Sample Size Per Group (n)

R
M

S
E FS−PA

2S−PA

JSEM



ADJUSTING PARTIAL INVARIANCE WITH 2S-PA 33

Figure 5
Coverage of 95% Confidence Intervals for Study 2
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Note. The points for β2 represent median values across conditions. The empirical Type I error rates can be obtained
as 1 - coverage rate when the true coefficient is zero.
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Figure 6
Empirical Power for Study 2
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Note. The points for β2 represent median values across conditions.
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