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Abstract 

Much of the previous literature on partial measurement invariance has focused on (a) statistically 

detecting non-invariance and (b) modeling partial invariance to obtain correct inferences for 

latent mean comparisons across groups in a single research study.  However, very little guidance 

is provided on the practical implications of partial invariance on the instrument itself in the 

context of selection.  In a frequently cited paper, Millsap and Kwok (2004) provided a 

framework for evaluating the impact of partial invariance by quantifying the magnitude of non-

invariance on the efficacy of the test for selection purposes, yet our literature review found that 

only a few of the citations have fully captured the essence of Millsap and Kwok’s method. In this 

paper, we briefly review the selection accuracy analysis for partial invariance and provide a user-

friendly R script (also available as a web application) that takes parameter estimates as input, 

automatically produces summary statistics for evaluating selection accuracy, and generates a 

graph for visualizing the results.  Hypothetical and real data examples are provided to illustrate 

the use of the R script.  The goal of this paper is to help readers understand Millsap and Kwok’s 

framework of evaluating the impact of partial invariance through an accessible computer 

program and step-by-step demonstrations of the selection accuracy analysis.  
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Understanding the Impact of Partial Factorial Invariance on Selection Accuracy: An R Script 

Measures in behavioral sciences, such as aptitude or personality tests, usually require 

evidence of validity across subpopulations before being established as a formal tool for research 

or selection purposes.  One essential step in this process is to check for measurement invariance; 

that is, to make sure that the measures maintain similar measurement structures between the 

constructs of interest and the observed items across subpopulations.  For psychological and 

behavioral measures, it is common to observe measurement invariance for some but not all items, 

a condition referred to as partial invariance.  

Previous literature mainly focused on either the detection of non-invariant items (e.g., 

Byrne, Shavelson, & Muthén, 1989; Cheung & Rensvold, 1999; Kaplan, 1989; Yoon & Millsap, 

2007) or the impact of partial invariance on parameter estimation for a given study (e.g., Guenole 

& Brown, 2014; Oberski, 2014); however, there have been relatively few discussions on the 

practical implications of partially invariant measures when using observed composite scores to 

select or classify individuals. An exception was the study by Millsap and Kwok (2004), who 

proposed an approach to evaluating how partial invariance affects the performance of a test (e.g., 

sensitivity and specificity) in selecting or classifying individuals based on an observed cutoff 

score, as compared to the performance when measurement invariance holds.  

Although Millsap & Kwok’s (2004) paper is frequently cited in measurement invariance 

research, only a small number of studies have directly and adequately applied their procedure. A 

probable reason for this void in the literature is the absence of user-friendly computer programs 

to implement the procedure. Therefore, the main goal of the present article is to provide a review 
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of their procedure, along with an R script and a web application that researchers can easily use to 

perform that procedure to evaluate the effect of partial invariance.  

Factorial Invariance 

We first briefly review the definitions of measurement invariance and factorial invariance 

(i.e., measurement invariance under the common factor model), with similar notations in Millsap 

and Kwok (2004). For more in-depth discussion, please consult Meredith (1993) and Millsap 

(2011). Measurement invariance (Mellenbergh, 1989) is satisfied when the conditional 

probability distribution of the observed item score variable, X, given the latent variable to be 

measured, ξ, does not depend on the group membership variable, K. That is,  

P(X | ξ, K = k) = P(X | ξ) for all k.  

In other words, for two individuals with the same score on the latent construct, the probability 

distributions of their respective observed item scores are the same regardless of their group 

membership. 

Under the assumption that the observed variables conform to a common factor model 

(e.g., Thurstone, 1947), measurement invariance is equivalent to factorial invariance, namely, the 

invariance of measurement parameters in factor models. In subsequent sections we use 

measurement invariance and factorial invariance interchangeably.  

For a psychological instrument with q observed variables measuring one latent construct 

in K groups, the common factor model has the form 

Xk = τk + λkξk + δk, (1) 

where Xk is a q × 1 column vector of item score variables for the kth subpopulation, ξk denotes 

the latent score random variable, τk is a q × 1 column vector of measurement intercepts, λk is a q 

× 1 column vector of factor loadings that quantify the linear relationships between items and the 
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latent variable, and δk is a q × 1 column vector of the unique factor random variables.  Consistent 

with the notations in previous literature (Millsap, 2007; Widaman & Thompson, 2003), Xk, ξk, 

and δk are random variables and vectors.  Let E(ξk) = κk and Var(ξk) = φk be the mean and the 

variance of the latent variable, respectively.  Further, let the variance-covariance matrix among 

the unique factor variables be Cov(δk) = Θk, and assume that each unique factor variable has a 

zero mean, E(δk) = 0 for all k.  In practice, researchers usually impose the local independence 

assumption such that Θk is a diagonal matrix, meaning that the inter-item correlations are 

attributed solely to the variance of the underlying latent factor.  It is also assumed that ξk and δk 

are independent with Cov(ξk, δk) = 0, and together the model implies that E(Xk) = τk + λkκk and 

Var(Xk) = λkφkλk′ + Θk.  With the additional assumption that δk is multivariate normal, factorial 

invariance implies that all measurement parameters (i.e., intercepts, loadings, and unique factor 

covariances) are identical, which can be expressed in mathematical notations: 

τk = τ, λk = λ, Θk = Θ for all k, (2) 

a condition commonly known as strict factorial invariance (Meredith, 1993).  

In practice, however, strict invariance does not commonly hold, and for certain testing 

purposes only a subset of parameters (e.g., factor loadings, measurement intercepts) need to be 

equal across groups for meaningful group comparisons (Meredith, 1993; Steenkamp & 

Baumgartner, 1998). Therefore, four stages of factorial invariance are usually defined for 

different applications (Millsap, 2007). The first stage is configural invariance, which requires 

that the factor structures be the same across groups, including the same number of factors and the 

same composition of items for each factor. The second stage is metric invariance (Horn & 

McArdle, 1992; also called weak measurement invariance, Meredith, 1993; or pattern invariance, 

Millsap, 1995). This requires, in addition to configural invariance, that the factor loadings have 
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the same magnitudes in all groups (i.e., λk = λ for all k). As such, metric invariance ensures that a 

unit difference in the latent construct is comparable across subpopulations.  The third stage is 

scalar invariance (also called strong factorial invariance; Meredith, 1993). This requires, in 

addition to metric invariance, that the measurement intercepts are equal across groups (i.e., τk = τ 

for all k). Scalar invariance ensures that a given measure has the same origin or zero point.  The 

final stage is strict invariance as discussed in the previous paragraph, where the unique factor 

variances (and covariances, if applicable) are also identical (i.e., Θk = Θ for all k).  

Partial Measurement Invariance 

For a particular stage of factorial invariance, when invariance holds only for a subset of 

items (e.g., eight items have scalar invariance but 2 items do not), one only obtains partial 

measurement invariance (e.g. Byrne et al., 1989).1 Similar issues were also studied in the 

differential item functioning (DIF; cf. Hambleton, 2006; Millsap & Everson, 1993; Penfield & 

Lam, 2000) literature in item response theory (IRT), a framework for formulating measurement 

models for dichotomous and polytomous items; we refer to the DIF literature in our discussion 

when appropriate.   

Although many authors have provided guidance on how to identify partial measurement 

invariance using SEM (e.g., Asparouhov & Muthén, 2014; Byrne et al., 1989; Cheung & 

Rensvold, 1999; Jak, Oort, & Dolan, 2014; Kaplan, 1989; Merkle, Fan, & Zeileis, 2014; Merkle 

& Zeileis, 2013; Stark, Chernyshenko, & Drasgow, 2006; Van De Schoot, Schmidt, & De 

Beuckelaer, 2015; Yoon & Millsap, 2007), there is relatively less guidance on understanding the 

impacts of partial measurement invariance.  This is analogous to the difference between 

statistical significance and practical significance (and effect size), as the detected partial 

invariance may practically make no difference when interpreting the test scores, or vice versa.   
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As noted by Millsap and Kwok (2004), the evaluation of partial measurement invariance 

should be made “in relation to the purpose of the measure” (pp. 94–95). In the behavioral 

sciences, common purposes of a measure include (a) to quantify constructs in scientific research 

and (b) to select or identify individuals based on their relative standings or absolute scores on the 

test (Crocker & Algina, 2008).  However, most of the existing literature on partial measurement 

invariance addressed (a), with little attention paid to (b); (b) is exactly the problem studied in 

Millsap and Kwok (2004).   

Practical Significance of Partial Measurement Invariance in a Single Study 

As has been well documented in previous research (Steenkamp & Baumgartner, 1998; 

Vandenberg, 2002), certain applications of test scores are valid only when a certain stage of 

measurement invariance holds. For example, observed difference between groups could simply 

be an artifact of scalar non-invariance and may vanish or even be reversed if the researchers use 

a different measure that is scalar-invariant across groups (e.g., Steinmetz, 2013; Wicherts, Dolan, 

& Hessen, 2005).  Invariances of loadings and unique factor variances, on the other hand, are 

needed for comparing associations between test scores and other external variables across groups, 

such as in multiple regression and path analysis (Guenole & Brown, 2014). Recent research 

efforts have started to evaluate the degree to which partial invariance affects parameter 

estimations for a single study.  For example, Oberski (2014) proposed the expected parameter 

change-interest index for evaluating the sensitivity of means or path coefficients of interest when 

one relaxes an invariance constraint on a non-invariant item.  

Although the effects of ignoring partial invariance can be detrimental, for a given study it 

is still possible to obtain correct inferences at the latent-variable level if one uses a correct partial 

invariance model (Byrne et al., 1989) by placing equality constraints across groups only on the 
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invariant items in multiple-group SEM. Alternatively, one can utilize the recently developed 

technique of approximate invariance to align a measure with many non-invariant items across a 

large number of groups and estimate the latent means (Asparouhov & Muthén, 2014; Van de 

Schoot et al., 2013).  

Measurement non-invariance can also be related to theoretically justified factors, and it is 

important to understand what sources are responsible for the differences in measurement 

parameters across groups.2   

Practical Significance of Partial Measurement Invariance in the Context of Selection 

Another perspective to quantify the practical significance of partial invariance is to assess 

its impact on the validity of using test scores for selection, placement, or classification purposes.  

Psychological and behavioral measures are commonly used for, for example, identifying people 

with depressive symptoms, selecting or promoting employees, or providing support for college 

admissions decisions.  Although selection is an important purpose for psychological and 

behavioral testing, the majority of the literature on measurement invariance has focused more on 

obtaining valid inferences on mean comparisons and path coefficients for research studies 

(Schmitt & Kuljanin, 2008), and there has been relatively little guidance on what to do with 

partially invariant tests in the context of selection (Millsap & Kwok, 2004).  

There are some issues specific to using a test for selection as opposed to using it for a 

single research study, including (a) in making a decision, one usually uses the whole observed 

composite score distribution, rather than simply the observed or latent variable means; (b) a 

dichotomous decision (e.g., select or not; need to treat or not) is often made at the individual 

level; (c) the observed scores are compared to a prespecified cutoff.  Each of these issues has 

implications for the impact of partial invariance.  For (a), whereas the majority of the 
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measurement invariance literature has focused on the detection and impact of non-invariant items 

(or DIF in IRT), for selection the focus is on the aggregate bias of the test (or differential test 

functioning in IRT; Raju et al., 1995; Stark, Chernyshenko, & Drasgow, 2004). It is possible that 

the biases introduced by multiple items are somewhat canceled out, resulting in little overall 

impact on selection using the observed test scores.  For (b), the focus is no longer on the mean of 

each subpopulation, but rather on the classification accuracy at the individual level, as we discuss 

in the remaining of the article.  For (c), rather than using a summary index to quantify the impact 

of partial invariance on the latent mean difference or the path coefficient, in selection one 

evaluates the impact at a specific cutoff, as the impact of partial invariance may be different for 

different cutoffs chosen (Stark et al., 2004).  

Introduction to Selection Accuracy Analysis 

Millsap and Kwok (2004) introduced a novel approach to understanding the practical 

significance of partial invariance by evaluating the change in selection accuracy using observed 

composite scores.  Their approach is based on the assumption that the selection would be made 

based upon a cutoff on the composite of the observed item scores applied to all subpopulations.  

Although their discussion focused only on the unweighted sum of the item scores, the procedure 

can easily be applied to scale scores that are weighted sums of the item scores.  The approach 

also assumes that all items measure one single latent construct, which ideally could be used to 

make the selection decision; in other words, the measure is unidimensional.  If the items 

measured multiple dimensions of a construct, the researchers may treat the dimensions as 

separate and perform the selection accuracy analysis for each of the dimensions that exhibit lack 

of measurement invariance.  
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We will first review Millsap and Kwok's (2004) procedure following the notations in 

their paper. The selection accuracy analysis proceeds by first deriving the joint distribution of the 

latent construct, ξ, and the observed composite, Z, which is bivariate normal under the common 

factor model as defined in equation (1).  From equation (1), the mean of the composite for the kth 

subpopulation is μzk = 1′τk + 1′λkκk, where 1 is a q × 1 unit vector, and the variance of the 

composite is σ2
zk = (1′λk)

2φk + 1′Θk1, with the first term due to the latent factor and the second 

term representing the sum of unique factor variances of all items forming the composite.  The 

correlation between ξ and Z in the kth subpopulation is ρzξk = (1′λk)φk
1/2 / σzk, which is the ratio of 

(a) the standard deviation (SD) attributed to the latent factor and (b) the SD of Z.  

Because a single cutoff is applied to all subpopulations for selection, if the joint 

distribution of ξ and Z is constant for all k, selection accuracy is the same across subpopulations.  

With bivariate normality, the parameters (μzk, κk, σ
2

zk, φk, ρzξk) completely determine the joint 

distribution of ξ and Z in the kth subpopulation.  This means that even when measurement 

invariance holds (i.e., τ, λ, Θ are constant across groups), differences in the distributions of the 

latent construct (i.e., differences in κk and φk) still lead to differences in the joint distribution of ξ 

and Z, a phenomenon studied by Borsboom, Romeijn, and Wicherts (2008) and Millsap (1995).  

Consider a simple example of selection wherein school counselors try to identify 25% of 

students most in need of counseling for depression in two subpopulations (e.g., native English 

speakers vs. English learners).  Using the terminology of differential item functioning (Holland 

& Thayer, 1988), we refer to the majority subpopulation as the reference group and the minority 

subpopulation as the focal group; the latter is assumed to be at a disadvantage when non-

invariance is present. Ideally the counselors should select the 25% of participants with highest 

true (latent) depression scores in the combined population, but has to make the decision based on 
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the cutoff corresponding to the 75th percentile (i.e., top 25%) on the observed test scores.  

Therefore, one can imagine dividing the joint distribution into four quadrants using the cutoff 

scores on ξ and Z, as shown in Figure 1.  The challenge lies in determining the respective cutoff 

scores on ξ and Z, as the joint distributions of ξ and of Z in a combined population of two or 

more groups would be a mixture of normal distributions and are not standard.  The R script 

discussed in this paper (Appendix A) automates those calculations.  

In Figure 1, the top right quadrant labelled as A is the area of true positive, where 

individuals have scores above the cutoffs on both ξ and Z.  The top left quadrant labelled as B is 

the area of false positive, where individuals have scores above the cutoff on Z but not on ξ.  The 

bottom left quadrant labelled as C is the area of true negative, where individuals have scores 

below the cutoffs on both ξ and Z.  Finally, the bottom right quadrant labelled as D is the area of 

false negative, where individuals have scores above the cutoff on ξ but not on Z. 

Using terminologies in signal-detection theory (Swets et al., 1979) and diagnostic testing 

(Altman & Bland, 1994a, 1994b), one can summarize the selection accuracy for subpopulation k 

(k = r or f for the reference/focal groups) using four criteria: proportion selected (PS), success 

ratio or positive predictive value (SR), sensitivity (SE), and specificity (SP), where 

PSk = p(Ak) + p(Bk); (3) 

SRk = p(Ak) / [p(Ak) + p(Bk)]; (4) 

SEk = p(Ak) / [p(Ak) + p(Dk)]; (5) 

SPk = p(Ck) / [p(Ck) + p(Bk)]. (6) 

Continuing with our example, PS refers to the proportion of students identified as in need 

of counseling by the inventory.  SR is the proportion of students who are truly in need of the 

service among all the identified students; thus, a low success ratio means some wasted effort in 
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providing service to students who do not need it.  SE is the proportion of students who are 

identified among all the students in need of the service; thus, a low sensitivity means a failure to 

provide service to many of the students in need.  Finally, SP is the proportion of students who are 

not identified among all the students who do not need the service; so a low specificity means that 

many students who are classified as not being at risk by the inventory are actually in need of a 

service.  In this hypothetical example one can argue that sensitivity may be more important 

among the indices, but in practice different combinations of the indices may matter most, 

depending on the purpose of the test.  

Thus, researchers can better understand the impact of partial invariance by examining the 

changes in these four indices for the two subpopulations from the strict invariance model to the 

partial invariance model.  Even when strict invariance holds, the four indices would generally be 

different across groups due to differences in the distributions of the latent construct, as 

previously discussed. However, when partial invariance is present and the two groups differ in 

some loadings and/or intercepts, the differences in the four indices can become larger.   

Although one can get a rough idea of how the four selection indices may change when 

one isolates an intercept or a loading, with non-invariance on multiple intercepts, loadings, and 

uniqueness of varying magnitudes and potentially different signs, it is preferable to resort to 

computer programs to evaluate the impact of partial invariance on selection accuracy, which has 

not been available before this article.  This can potentially be a reason that we found only one 

paper (Alkemade, Bowden, & Salzman, 2015) performed the actual selection accuracy analysis 

on real data, out of the 79 published articles located from Web of Science Core Collection that 

studied measurement invariance for empirical data and that cited Millsap and Kwok (2004).  
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To make the selection accuracy analysis more accessible, in this paper we demonstrate 

the use of a user-friendly R script to perform the procedure with both hypothetical and real data 

examples. We also describe in Appendix B an example of selection accuracy analysis from a 

fitted lavaan (Rosseel, 2012) object in R using the PartInv.lavaan function, which 

avoids the need for manual input. For readers who are not familiar with R, we also provide a web 

application of the program on https://sites.google.com/site/partialinvarianceselection that does 

not require installations of R and relevant R packages. 

Hypothetical and Real Data Examples 

Hypothetical Example 1: Strict Invariance 

Consider the strict invariance example in Millsap and Kwok (2004) with a one-factor 

four-indicator model for two groups, where κr = 0.5 for the reference group and κf = 0 for the 

focal group, and φr and φf are both 1.0. Strict invariance implies that the factor loadings are equal, 

λr = λf = [0.3 0.5 0.9 0.7]′, the intercepts are equal, τr = τf = [0.225 0.025 0.010 0.240]′, and the 

unique factor covariance matrices are also equal and follow a diagonal matrix, Θr = Θf = 

diag[0.96 0.96 0.96 0.96].  In this example, we assume that the measure is used to select the top 

25% of the combined population, and that the two subpopulations are of similar size.   

We will detail the steps needed to execute this analysis with the direct application of the 

R script in Appendix A, but the information and instructions also apply if one performs the same 

analysis using the web application.  A prerequisite to using the script is to have the R package 

mnormt (Azzalini & Genz, 2016) installed and loaded, which computes the densities and 

quantiles for multivariate normal distributions.  

To perform the procedure in R, one first sources the R script file given in Appendix A by 

entering the following command:   
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source(“PartInv.R”) 

Then one calls the function PartInv to perform the analysis: 

PartInv(propsel = .25, kappa_r = 0.5, kappa_f = 0, phi_r = 1, lambda_r = c(.3, .5, .9, .7),  

        tau_r = c(.225, .025, .010, .240), Theta_r = diag(.96, 4), pmix_ref = 0.5) 

where the first argument, propsel, is the proportion to be selected in the combined population 

(i.e., .25 in this example), kappa_r and kappa_f take values for κr and κf, respectively, and 

phi_r, lambda_r, tau_r, and Theta_r expect inputs of φr, λr, τr, and Θr for the reference 

group.  The function also has optional arguments for the focal group: phi_f, lambda_f, 

tau_f, and Theta_f; however, if no inputs are provided, by default they are assumed equal to 

their counterparts in the reference group.  Finally, the argument pmix_ref allows one to 

specify the proportion of the reference group at the population level, which has a default value 

of .5 (can be dropped in the above syntax as the input is the same as the default), meaning that 

the sizes of the two subpopulations are equal; in a later example readers can see that the value 

can be changed to also reflect unequal subpopulation sizes. Please see the documentation in 

Appendix A (i.e., the part in PartInv preceded by “#”s) for more details about the arguments.   

The above R call results in the following output, as also illustrated by the solid and dotted 

ellipses in Figure 2 (a) and (b): 

$cutoffs 

  propsel  cutpt_xi   cutpt_z  

0.2500000 0.9457938 3.2292682  

 

$summary 

                    Reference Focal 

A (true positive)       0.222 0.110 

B (false positive)      0.089 0.079 

C (true negative)       0.583 0.748 

D (false negative)      0.106 0.062 

Proportion selected     0.311 0.189 

Success ratio           0.714 0.580 

Sensitivity             0.677 0.638 

Specificity             0.868 0.904 

The first value in the output, propsel, is simply a reprint of the selection proportion.  The 

second and third values, cutpt_xi and cutpt_z, give the cutoff values on ξ and Z, 
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respectively.  What follows is a summary table providing the proportions of the four quadrants, 

p(Ak), p(Bk), p(Ck), and p(Dk), as well as the four summary statistics for selection accuracy, PSk, 

SRk, SEk, and SPk, for both the reference group and the focal group, which are the major results 

with Millsap and Kwok’s (2004) procedure. Finally, the R call also generates the graph in Figure 

2 (a) and (b) with the latent score ξ on the x-axis and the observed composite score Z on the y-

axis, with the corresponding cutoff values on ξ and on Z; the two cutoff lines divide the two-

dimensional space into the four quadrants A, B, C, and D, as previously discussed.  The regions 

enclosed by the solid ellipse and the dotted ellipse are 95% confidence regions for the joint 

distributions of ξ and Z for the reference group and the focal group, respectively.  

Two observations of the graph are worth mentioning.  First, compared to the reference 

subpopulation, there are less true positives (p(A)) but more true negatives (p(C)) in the focal 

subpopulation, because the reference subpopulation has a higher latent mean.  This again shows 

that strict measurement invariance does not imply invariance in selection, unless the latent score 

distributions are identical for the subpopulations. Therefore, it is important for researchers to 

obtain the selection statistics for both the partial invariance model and the strict invariance to 

correctly evaluate the impact of partial invariance on selection.  Second, we observe that SRf < 

SRr (.58 vs. .71), SEf < SEr (.64 vs. .68), and SPf >  SPr (.90 vs. .87) from the text output, 

suggesting similar sensitivity and specificity of the measure across the two subpopulations (see 

also Table 1).  The summary statistics for this strict invariance example will be used as a basis 

for evaluating the impact of partial invariance in the next two examples.  

Hypothetical Example 2: Partial Scalar Invariance 

Now modify the previous example so that three of the four items are scalar non-invariant,  

with τf = [0.225 −0.050 0.240 −0.025]′ and τr = [0.225 0.025 0.010 0.240]′.  Also note that the 
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differences in measurement intercepts have different magnitudes and directions.  To investigate 

the influence of such partial invariance on selection accuracy, one can again call in R: 

PartInv(propsel = .25, kappa_r = 0.5, kappa_f = 0, phi_r = 1, lambda_r = c(.3, .5, .9, .7), 

        tau_r = c(.225, .025, .010, .240), tau_f = c(.225, -.05, .240, -.025),  

        Theta_r = diag(.96, 4)) 

Notice that this time we drop pmix_ref, invoking the default value of 0.5.  Also, one needs to 

input tau_f as it is no longer invariant across subpopulations.  The results were shown in the 

middle column of Table 1 and the solid and dashed ellipses in Figure 2 (a). 

Because the parameters for the reference group stay the same, the solid ellipse stay the 

same in Figure 2 (a).  As three of the four measurement intercepts are non-invariant for the focal 

group, readers may at first expect a big change on the joint distribution of ξ and Z .  However, as 

illustrated, the dashed ellipse barely changes from Example 1, and from Table 1, p(A), p(B), p(C), 

and p(D) are comparable to those in Example 1 for both the reference and the focal group.  As a 

result, in this example, partial invariance has little effect in the focal population on the proportion 

selected (from .189 to .184), success ratio (from .580 to .587), sensitivity (from .638 to .627), 

and specificity (from .904 to .926), which can also be observed in Table 1.   

The small impact of partial invariance in this example may be explained by the fact that 

the non-invariances for items 3 and 4, which are relatively large in magnitude but have different 

directions (i.e., item 3: 0.240 for focal and 0.010 for reference; item 4: −0.025 for focal and 

0.240 for reference) and roughly cancel out, and the non-invariance on item 2 is relatively small 

(i.e., −0.050 for focal and 0.025 for reference).  Note that the impact of partial scalar invariance 

can be much more dramatic with a different pattern of non-invariances on the intercepts, and 

selection accuracy analyses help summarize the consequence of partial invariance.  

Hypothetical Example 3: Partial Metric Invariance  
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Consider another example where items 2, 3, and 4 are scalar non-invariant with mixed 

directions and magnitude, with τf = [0.225 −0.225 0.240 −0.025]′ and τr = [0.225 0.025 0.010 

0.240]′, and items 3 and 4 are also metric non-invariant with smaller factor loadings on for the 

focal group such that λf = [0.3 0.5 0.7 0.5]′ and λr = [0.3 0.5 0.9 0.7]′.  To investigate the 

influence of such non-invariances on selection accuracy, one can again call R: 

PartInv(propsel = .25, kappa_r = 0.5, kappa_f = 0, phi_r = 1,  

        lambda_r = c(.3, .5, .9, .7), lambda_f = c(.3, .5, .7, .5), 

        tau_r = c(.225, .025, .010, .240), tau_f = c(.225, -.225, .240, -.025),  

        Theta_r = diag(.96, 4)) 

Aside from a different input for tau_f, one also needs to input lambda_f as it is no longer 

invariant across subpopulations.  The above R call computes the summary statistics in the last 

column of Table 1 and generates the solid and dashed ellipses in Figure 2 (b). 
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Again, the solid ellipse stays the same in Figure 2 (b).  As two of the factor loadings for 

the focal group get smaller, the correlation between Z and ξ is reduced, so the dashed ellipse 

rotates slightly clockwise around its center and the ratio of its major axis to its minor axis gets 

smaller.  The reduced correlation mainly reduces p(A) and increases p(C), while the impacts on 

p(B) and p(D) are negligible.  In addition, the net effect of the non-invariances on the intercepts 

and the loadings shifts the dashed ellipse downward.  As a result, fewer individuals (from .189 

to .161) are selected from the focal group, and there is a large reduction in SEf (from .638 

to .529).  A decreased sensitivity is perhaps most problematic for screening tools for identifying 

individuals in need of interventions.  For example, for a measure identifying individuals with 

high suicidal ideation, less sensitivity would mean that among the focal subpopulation (e.g., 

females) with high risk of committing suicide, a lower proportion can be detected from the test.  

For such a test purpose and given similar results as this example, a researcher may decide not to 

use this measure for screening, especially for the focal subpopulation.  

The partial metric invariance also slightly reduces SRf; that is, among individuals in the 

reference group who are identified by the test, fewer are actually in need of an intervention.  

There are also changes in the selection accuracy indices in the reference subpopulation due to the 

change of cutoff on Z from 3.23 to 2.99 (which results from the changes in the measurement 

parameters), but the differences are less dramatic than those for the focal subpopulation. 

Real Data Example 

We now demonstrate the use of selection accuracy analyses using results on partial 

measurement invariance reported in an empirical study.  Zhang et al. (2011) studied the 

measurement equivalence of the 4-factor, 20-item Center for Epidemiological Studies 

Depression (CES-D) Scale (Radloff, 1977) across a Chinese sample (N = 4, 903) and a Dutch 
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sample (N = 1,903) of elderly groups. Comparing the metric invariance model to the baseline 

(configural) model, the authors found that changes in fit indices were small, with ΔCFI = 0.004 

and ΔRMSEA = 0.003, thus concluding that metric invariance held.  However, when comparing 

the scalar invariance model and the metric invariance model, they got ΔCFI = 0.014 and 

ΔRMSEA = 0.0148, and concluded that that scalar invariance did not hold.  They then searched 

for scalar non-invariant items, which resulted in a partial scalar invariance model with one item 

on the Depressive Affect factor (“failure”) and one item on the Positive Affect factor (“good”) 

being scalar non-invariant.  We use the Positive Affect items to illustrate our R script in the 

present paper.  Note that the demonstration below is for illustration purpose only, and should not 

be taken as an accurate account of the selection bias of the CES-D across Chinese and Dutch 

populations.3 

Table 2 shows the estimated factor loadings, intercepts, and uniqueness of the four items.  

Note that the items were all reversely coded in the original analyses in Zhang et al. (2011), so the 

factor may be better understood as Lack of Positive Affect. Although the correctly specified 

partial scalar invariance model still allows for valid comparisons of the latent factor means 

between the two samples in Zhang et al.'s (2011) study, with the presence of non-invariant items 

it is not clear whether the CES-D should still be used as a screening tool for the Chinese and the 

Dutch elderly populations.  

To understand the impact of the non-invariance, one can perform selection accuracy 

analyses using the PartInv function with the parameter estimates in Table 2.  Although the 

CES-D includes four factors and the selection accuracy analysis assumes a one-factor model, as 

suggested by Millsap and Kwok (2004) one can conduct the analyses from a selection approach 

separately for each factor. In this paper, we illustrate the impact of the non-invariant items 
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measuring the (Lack of) Positive Affect factor.  We also assume that the ratio between the two 

target populations is similar to the sample size ratio of 5 to 2 for Chinese and Dutch elderly for 

illustrative purposes; however in empirical studies and it is important to incorporate knowledge 

about the target populations and the intended usage of the test in deciding the mixing proportion.  

For the latent factor (Lack of) Positive Affect, the mean and the SD were 0 and 0.354, 

respectively, for the Chinese sample and −0.125 and 0.329, respectively, for the Dutch sample.  

To perform the selection accuracy analysis, assuming that this time one is interested in 

identifying 14% of the combined population with highest depressive affect (which corresponds 

to an observed subscale score of 8 or above), one can first use the following R call: 

PartInv(propsel = .14, kappa_r = 0, kappa_f = -0.125, phi_r = 0.354^2, phi_f = 0.329^2, 

        lambda_r = c(1.00, 1.66, 2.30, 2.29),  

        tau_r = c(1.54, 1.36, 1.16, 1.08),  

        tau_f = c(0.68, 1.36, 1.16, 1.08),  

        Theta_r = diag(c(1.20, 0.81, 0.32, 0.32)),  

        Theta_f = diag(c(0.72, 0.81, 0.32, 0.32)),  

        pmix_ref = 5 / 7) 

Note that one can replace the propsel = .14 argument with cut_z = 8, which is the way 

to provide a prespecified cutoff on the observed composite score (8 in this case) for 

selection/diagnosis.  The argument pmix_ref = 5 / 7 specifies that the Chinese elderly 

population is assumed to represent 5/7 of the combined population.  As shown in Table 3, the 

summary statistics under the partial scalar invariance model are, for the Chinese and the Dutch 

elderly population respectively, .173 and .049 for proportions selected, .646 and .695 for success 

ratios, .688 and .456 for sensitivities, and .927 and .984 for specificities.  

Although the numbers in the previous analysis are interpretable on their own, to 

appreciate the impact of the partial scalar invariance one needs to compare these numbers with 

those under a strict invariance model.  As suggested by Millsap and Kwok (2004), one can use 

the weighted averages of the non-invariant parameters as the common parameter values when 

invariance holds. In our example, we assume that the measurement intercept for “good” would 
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be 1.54 × 5/7 + 0.68 × 2/7 ≈ 1.29 if scalar invariance held, and the unique factor variances would  

similarly be the weighted averages of the estimates from the Chinese and the Dutch samples.   

Under the strict invariance model with the latent means and variances unchanged, the 

summary statistics are, for the Chinese and the Dutch elderly population, respectively, .152 

and .081 for proportions selected, .673 and .535 for success ratios, .656 and .609 for sensitivities, 

and .941 and .960 for specificities (see also Table 3).  Therefore, for the Dutch (focal) group, the 

sensitivity drops by 15.3 percentage points (i.e., from .609 to .456), so the partial invariance has 

a relatively big effect on the selection accuracy of the CES-D Positive Affect factor.  In other 

words, if one intends to identify people with truly low positive affect (e.g., for the purpose of 

receiving a particular type of intervention) in a combined Chinese and Dutch elderly population, 

the four CES-D Positive Affect items will likely do a poor job, especially for the Dutch group, as 

only 45.6% of the Dutch individuals who are truly with low positive affect are identified to 

receive the intervention, compared to 60.9% if the scale is strict invariant.  

Summary of the Steps for Analyzing Partial Invariance With the Selection Approach 

In summary, we suggest the following steps for performing the selection accuracy 

analysis when partial measurement invariance is identified: 

1. Obtain parameter estimates for each group (i.e., latent factor means and variances, factor 

loadings, measurement intercepts, and uniqueness) under the partial measurement invariance 

model using regular SEM programs.  

2. Determine the mixing proportion in the population. 

3. Determine the intended percentage of selection from the combined population (i.e., 

propsel in PartInv) or a specific cutoff on the observed composite score (i.e., cut_z). 



 

 

 

PARTIAL INVARIANCE AND SELECTION  22 

4. Call the R function PartInv (or use the web application) with the input of the parameter 

estimates under the partial invariance model, mixing proportion, and the intended percentage 

of selection to obtain the results from the selection accuracy analysis.  

5. Obtain plausible parameter estimates under the strict invariance model by replacing the non-

invariant parameters with the weighted averages of the estimates under the partial invariance 

model (or with other sensible values).  

6. Repeat step 4 but use the plausible parameter estimates obtained in step 5. 

7. Compare the results from steps 4 (partial invariance) and 6 (strict invariance) to evaluate the 

impact of partial invariance (e.g., examine the changes in the proportion selected, success 

ratio, sensitivity and specificity).  

Note that if one uses lavaan for parameter estimations in steps 1, 4, 5 and 6 may be 

automated using the function PartInv.lavaan described in Appendix B. 

Conclusions 

Despite abundant research efforts to develop guidance for detecting partial measurement 

invariance and documenting the consequences of incorrectly modeling the partial invariance for 

research purposes, few attempts have been made to answer the question, “What actual impact 

would the detected partial invariance have on the selection accuracy when using the same test 

across groups?”   

We agree with Millsap and Kwok (2004) that the impact of non-invariance should be 

evaluated in relation to the purpose of a given test, and should be assessed not only by its 

presence but also by its practical significance. Millsap and Kwok made one of the early attempts 

to answer the question and proposed a framework for evaluating the impact of measurement non-

invariance by quantifying the magnitude of non-invariance with respect to selection accuracy.  
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Although the approach has been recognized as important by a number of authors (Borsboom, 

2006; Bowden, 2013; Meade & Bauer, 2007; Schmitt & Kuljanin, 2008), our literature review 

showed that only one study (Alkemade, Bowden, & Salzman, 2015) actually conducted the 

corresponding analysis with real data. One likely reason for this is the lack of computer programs 

to automate the many steps involved in the analysis.  

The present paper briefly reviewed the theoretical impact of partial invariance on 

selection in a combined population of two subpopulations.  More important, we provide an R 

script and a web application to automatically compute the cutoff scores on the observed 

composite and the latent factor, the proportions selected, success ratios, sensitivities, and 

specificities of the test for each subpopulation, and a diagram visualizing the selection, taking as 

inputs parameter estimates of the partial invariance model, which can be obtained from standard 

SEM software. In addition to simply carrying out hypothesis tests for measurement invariance 

models, we encourage researchers to perform the selection accuracy analyses to understand the 

practical impact of partial invariance on selection, just like researchers should report effect sizes 

in addition to p-values to understand the practical significance of the results of data analyses.  
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Footnotes 

1Note that an assumption of partial invariance is that the constructs being measured are 

conceptually comparable across groups.  In a counterexample, Lommen, van de Schoot, and 

Engelhard (2014) discussed how theory may predict that a measure of posttraumatic stress 

disorder (PTSD) shows changes in its measurement properties across time, and argued for the 

possibility of treating pre-symptom scores as measuring a different construct than the post-

symptom scores. 

2For instance, in Wicherts et al. (2005) the measurement non-invariance across genders 

was attributed to stereotype threat, in which certain questions induce higher anxiety for test 

takers of one gender than of the other. In the DIF literature, Gierl and  Khaliq (2001) found that 

measurement non-invariance in achievement tests across language groups can be predicted by 

various categories of translation factors (see also Ercikan, 2002). In these examples, the 

researchers studied measurement non-invariance per se rather than treating them as a nuisance 

that biased the research findings of interest.  Such research efforts to uncover the sources of 

measurement non-invariance are important; however, it is beyond the scope of the present article 

as we focus more on the practical impact of measurement non-invariance for selection purposes. 

3Although the CES-D items, measuring the frequency with which participants 

experienced depressive symptoms, are in a 4-point scale response format (1 = none, 2 = one or 

two days a week, 3 = three or four days per week, and 4 = five days or more per week), Zhang et 

al. (2011) treated the items as continuous as in regular CFA so the parameter estimates may be 

biased, but the impact of such misspecification is not known without access to the raw data. Also, 

the selection accuracy analysis so far discussed assumes a continuous and normally distributed 

observed composite, Z, which was clearly violated for the CES-D.  However, as the composite 
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score is the sum of multiple ordered categorical items, the normality assumption should hold 

approximately with enough items.   
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Table 1 

Proportions Selected, Success Ratios, Sensitivities, and Specificities for Hypothetical Examples 1, 

2, and 3 

 Strict Invariance Partial Scalar 

Invariance 

Partial Metric 

Invariance 

PS – Reference .311 .316 .339 

PS – Focal .189 .184 .161 

SR – Reference .714 .710 .691 

SR – Focal .580 .587 .566 

SE – Reference .677 .684 .715 

SE – Focal .638 .627 .529 

SP – Reference .868 .863 .844 

SP – focal .904 .908 .916 

Note. PS = proportion selected; SR = success ratio; SE = sensitivity; SP = specificity.  
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Table 2 

Factor Loadings, Intercepts, and Uniqueness of the CES-D Positive Affect Factor 

 Factor Loadings Intercepts Uniqueness 

 All Chinese Dutch Chinese Dutch 

Good 1.00 1.54 0.68 1.20 0.72 

Hopeful 1.66 1.36 0.81 

Happy 2.30 1.16 0.32 

Enjoyed 2.29 1.08 0.32 

Note. N = 4,903 for the Chinese sample and N = 1, 903 for the Dutch sample. The four items 

were reversely coded. 
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Table 3 

Proportions Selected, Success Ratios, Sensitivities, and Specificities of the CES-D Positive Affect 

Factor 

 Strict Invariance Partial Scalar Invariance 

PS – Chinese .152 .173 

PS – Dutch .081 .049 

SR – Chinese .673 .646 

SR – Dutch .535 .695 

SE – Chinese .656 .688 

SE – Dutch .609 .456 

SP – Chinese .941 .927 

SP – Dutch .960 .984 

Note. N = 4,903 for the Chinese sample and N = 1, 903 for the Dutch sample. PS = proportion 

selected; SR = success ratio; SE = sensitivity; SP = specificity.  
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Figure 1. Recreation of Figure 2 from Millsap and Kwok (2004) showing the bivariate 

distribution of latent score and observed composite score with respect to two subpopulations.  
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(a)       (b) 

Figure 2. Bivariate distribution of latent score and observed composite score for (a) Example 2 

with partial scalar invariance and (b) Example 3 with partial metric invariance. The thicker lines 

with long dashes show the distributions of the focal group under partial invariance, whereas the 

thinner dotted line show the distributions of the focal group under strict invariance.  

 

 


