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Abstract21

With clustered data, such as where students are nested within schools or employees are nested22

within organizations, it is often of interest to estimate and compare associations among variables23

separately for each level. While researchers routinely estimate between-cluster effects using the24

sample cluster means of a predictor, previous research has shown that such practice leads to biased25

estimates of coefficients at the between level, and recent research has recommended the use of latent26

cluster means with the multilevel structural equation modeling framework. However, the latent27

cluster mean approach may not always be the best choice as it (a) relies on the assumption that the28

population cluster sizes are close to infinite, (b) requires a relatively large number of clusters, and29

(c) is currently only implemented in specialized software such as Mplus. In this paper, we show how30

using empirical Bayes estimates of the cluster means can also lead to consistent estimates of31

between-level coefficients, and illustrate how the empirical Bayes estimate can incorporate finite32

population corrections when information on population cluster sizes is available. Through a series33

of Monte Carlo simulation studies, we show that the empirical Bayes cluster-mean approach34

performs similarly to the latent cluster mean approach for estimating the between-cluster35

coefficients in most conditions when the infinite-population assumption holds, and applying the36

finite population correction provides reasonable point and interval estimates when the population is37

finite. The performance of EBM can be further improved with restricted maximum likelihood38

estimation and likelihood-based confidence intervals. We also provide an R function that39

implements the empirical Bayes cluster-mean approach, and illustrate it using data from the classic40

High School and Beyond Study.41

Keywords: Multilevel modeling, contextual effect, centering, empirical Bayes estimates,42

finite population correction43

Word count: 5,05244
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Correcting for sampling error in between-cluster effects: An empirical Bayes45

cluster-mean approach with finite population corrections46

Multilevel modeling (MLM) is a popular approach to analyzing clustered data in social and47

behavioral sciences, such as data with students nested within schools or repeated measures nested48

within participants (Snijders & Bosker, 2012). However, modeling the effect of a within-cluster level49

predictor is not a trivial task, as only including the raw predictor variable may result in an50

estimated coefficient that conflates the effects at the within-cluster level and the between-cluster51

level. A standard approach to disentangle the between and the within effects is to compute the52

mean value of the within-cluster predictor for each cluster and include this cluster mean variable as53

a predictor (e.g., Enders & Tofighi, 2007; Kreft et al., 1995). The model should also include either54

the original within-level predictor, resulting in the so-called contextual model, or the55

cluster-mean-centered predictor from which the cluster means have been subtracted, resulting in56

the so-called between-within model.57

As shown in Lüdtke et al. (2008), however, using the observed cluster mean variable—the58

sample mean predictor value of each cluster—may result in biases in the parameter estimates. This59

bias happens when the observed cluster mean is not a perfectly reliable measure of the true cluster60

mean, and has the most impact when the cluster sample size is small and is only a small fraction of61

the population cluster size (Asparouhov & Muthén, 2019; Shin & Raudenbush, 2010). For example,62

if a researcher computes the school-level achievement based on the mean score of five students in63

the sample, that sample mean likely contains much sampling error and is unreliable, and using this64

unreliable predictor leads to biased parameter estimation just like classical measurement error (e.g.,65

Cole & Preacher, 2014). To adjust for such bias, Lüdtke et al. (2008) proposed using the latent66

cluster means, referred to as the latent-means-as-covariate (LMC) approach, by modeling the67

between-level cluster means as a latent variable under the multilevel structural equation modeling68

(MSEM) framework.69

Although the LMC approach can remove the measurement-error-induced bias in estimating70

between-level coefficients, it has three major limitations. First, as shown in Lüdtke et al. (2008),71

LMC requires a relatively large sample size (with at least 100 clusters), and it results in less72
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efficient estimates (in terms of root mean squared error [RMSE]) than using the observed means in73

small samples. Second, as LMC is based on the MSEM framework, it has added complexity in74

model specification (Hoffman, 2019) and requires specialized software (e.g., Mplus), which may not75

be familiar to researchers who regularly use MLM software. Third, the LMC approach assumes that76

the sample units in a cluster are drawn from an infinitely large population cluster; however, in some77

applications, such an assumption may not hold, like when researchers have surveyed all students in78

a classroom, in which case Lüdtke et al. has shown that using the observed cluster means results in79

less bias.80

Given the bias produced by the observed cluster-mean approach (CM) and the limitations81

of LMC, in this paper, we aim to introduce researchers to the less well-known Empirical Bayes82

cluster-mean (EBM) approach for consistent estimation of between-level effects. While EBM was83

discussed in Shin and Raudenbush (2010), it has not been systematically evaluated and compared84

to LMC, to our knowledge. The contribution of the current paper is three-fold. First, we derive a85

bias-corrected estimator for the random intercept variance based on EBM, in addition to the86

fixed-effect coefficients. Second, using two simulation studies, we provide empirical evidence on how87

EBM compares to LMC, including conditions with finite population cluster sizes. Third, as EBM88

has not been implemented in commonly used software programs for multilevel modeling—a89

potential reason for its low usage in applied research—we provide an R function that uses EBM for90

corrected fixed and random effects.1 The R function also allows researchers to specify the91

population cluster size(s) when the infinite population assumption in LMC is not tenable, as92

illustrated later using the classic High School and Beyond Survey data set (Raudenbush & Bryk,93

2002).94

Model Notations95

Let 𝑋 be a within-level predictor, and μ𝑋 be a random variable of true cluster means.96

Following Lüdtke et al. (2008), we assume that μ𝑋 is an error-free variable that is likely different97

from the observed cluster means, 𝑋.. Let 𝑛pop, 𝑗 be the population size of the 𝑗th cluster and 𝑛 𝑗 is98

the sample cluster size. To the extent that the sample units in a cluster are considered a random99

1 The R function and the supplemental results can be found at https://anonymous.4open.science/r/ebm-supp-B7ED/

https://anonymous.4open.science/r/ebm-supp-B7ED/
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sample of all the units in that cluster, the sampling error of 𝑋. as a representation of μ𝑋 has100

variance101

Var(𝑋. 𝑗 − μ𝑋 𝑗 |μ𝑋 𝑗) =
σ2
𝑋

𝑛 𝑗

fpc 𝑗 ,

where σ2
𝑋

is the within-cluster variance of 𝑋, which is assumed constant across clusters, and102

fpc 𝑗 =
𝑛pop, 𝑗 − 𝑛 𝑗

𝑛pop, 𝑗 − 1

is the finite population correction factor (FPC; e.g., Lai et al., 2018), which approaches one when103

𝑛pop, 𝑗 is large relative to 𝑛 𝑗 . When fpc 𝑗 = 1, the measurement error variance becomes σ2
𝑋
/𝑛 𝑗 as104

discussed in Lüdtke et al. (2008). However, in the case where all units in a cluster are included in105

the sample such that 𝑛pop, 𝑗 = 𝑛 𝑗 , the sampling error variance is 0, and Lüdtke et al. (2008) showed106

that one should use CM in this case.107

In the general case where 𝑋 and μ𝑋 relate to an outcome variable 𝑌 differently, and the108

within-cluster slopes between 𝑌 and 𝑋 vary across clusters, we have the following multilevel model:109

𝑌𝑖 𝑗 = γ00 + γ10(𝑋𝑖 𝑗 − μ𝑋 𝑗) + γ01μ𝑋 𝑗 + 𝑢0 𝑗 + 𝑢1 𝑗 (𝑋𝑖 𝑗 − μ𝑋 𝑗) + 𝑒𝑖 𝑗 , (1)

where γ00 is the grand intercept, γ10 is the average within-cluster slope, γ01 is the between-level110

slope, 𝑢0 𝑗 and 𝑢1 𝑗 are the cluster-specific deviations in the intercept and the slope, and 𝑒𝑖 𝑗 is the111

within-cluster level error term. We apply the standard assumptions that 𝑢0 𝑗 , 𝑢1 𝑗 , and 𝑒𝑖 𝑗 all have112

means zero, and that 𝑒𝑖 𝑗 is independent to 𝑢0 𝑗 and 𝑢1 𝑗 . In addition, we assume that the random113

effects and errors are normally distributed and independent to 𝑋 and μ𝑋.114

For simplicity, we first consider the case where the sample and population cluster sizes are115

constant such that 𝑛 𝑗 = 𝑛 and 𝑛pop, 𝑗 = 𝑛pop for all 𝑗s. As shown in Lüdtke et al. (2008) and Grilli116

and Rampichini (2011), in CM, when the sample cluster mean 𝑋. is used in place of the unobserved117

μ𝑋, the estimator for γ10 is still consistent, but the estimator for γ01 has a bias of magnitude118

(γ10 − γ01) (1 − λ𝑋), where119

λ𝑋 =
τ2
𝑋

τ2
𝑋
+ σ2

𝑋
fpc2/𝑛

(2)
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is the reliability of 𝑋., with τ2
𝑋
= Var(μ𝑋). When 𝑛 𝑗 and/or 𝑛pop, 𝑗 are not constant, the bias is120

approximately (γ10 − γ01) (1 − λ̄𝑋), where121

λ̄𝑋 =
1
𝐽

𝐽∑︁
𝑗=1

τ2
𝑋

τ2
𝑋
+ σ2

𝑋
fpc 𝑗/𝑛 𝑗

is the average reliability of the cluster means.122

Latent Means as a Covariate123

The LMC approach is based on the MSEM framework, available in software such as Mplus124

and the R package OpenMx.2 For models without random slopes, it estimates parameters of125

equation (1) directly by treating μ𝑋 as a latent variable and performs latent decomposition of 𝑋126

into the between-cluster and the within-cluster components (Asparouhov & Muthén, 2019). Lüdtke127

et al. (2008)’s simulation showed that, in terms of bias, LMC yielded unbiased contextual effect128

estimates (i.e., γ10 − γ01) for conditions with sampling fraction (i.e., 𝑛 𝑗/𝑛pop, 𝑗) close to zero, 50129

clusters or above, 𝑛 𝑗 ≥ 15, and ICC𝑋 ≥ .10. However, in terms of efficiency (as measured by130

RMSE), estimates from LMC were less efficient than those from CM for conditions with 50 clusters131

(and ICC𝑋 ≤ .20). Similarly, Aydin et al. (2016) compared CM and LMC for two-level132

cluster-randomized trials with a covariate, and found that CM yielded better power and coverage133

rates for the between-level treatment effect while maintaining good Type I error rates.134

Handling models with random slopes is more complex in MSEM. Before version 8.1, Mplus135

implemented LMC using the so-called “hybrid” method (Asparouhov & Muthén, 2019) with the136

model137

𝑌𝑖 𝑗 = γ00 + γ∗10𝑋𝑖 𝑗 + γ01μ𝑋 𝑗 + 𝑢0 𝑗 + 𝑢1 𝑗𝑋𝑖 𝑗 + 𝑒𝑖 𝑗 , (3)

which includes the latent μ𝑋 and the uncentered 𝑋 in the fixed effects, and the uncentered 𝑋 for138

the random slope component. With the uncentered 𝑋 in the model, γ∗01 corresponds to the139

contextual effect, while the between-cluster effect can be obtained as γ∗10 + γ01. As pointed out in140

Asparouhov and Muthén (2019), this method conflates the level-1 and level-2 coefficients and may141

lead to biased estimates. More recently, Asparouhov and Muthén (2019) and the Mplus team142

2 Another popular R package for SEM, lavaan, currently only supports models without random slopes.
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suggested directly estimating the model in equation (1) with μ𝑋 treated as a latent variable, which143

was the same as the latent cluster-mean approach discussed in Shin and Raudenbush (2010).144

Bayesian estimation is needed, however, as the model involves the latent product term 𝑢1 𝑗μ𝑋.145

Asparouhov and Muthén (2019) found that Bayesian LCM had negligible bias with 500 clusters,146

but the coverage of the 95% interval was below the nominal level for some model parameters.147

There are several advantages of the MSEM framework compared to standard MLM analysis148

(e.g., Preacher et al., 2010). First, unlike MLM, which requires the outcome variable to be at level149

1, MSEM can incorporate outcome variables at upper levels. Second, while MLM assumes150

predictors to be perfectly reliable, MSEM incorporates measurement models for error-prone151

predictors (and outcomes) so that coefficients are adjusted. Third, MSEM is a multivariate152

technique that allows specifying a path model, such as a mediation model, with multiple outcome153

variables, whereas standard MLM only allows one outcome variable and requires burdensome steps154

to specify multivariate models (see e.g., Raudenbush & Bryk, 2002).155

On the other hand, one limitation of MSEM, as compared to MLM, is that most MSEM156

software implementation uses maximum likelihood (ML) estimation, which gives biased estimates of157

random effect variances when the sample size is small relative to the number of predictors158

(McCulloch & Searle, 2001). This is in contrast to the ease of using restricted maximum likelihood159

(REML) estimation in MLM, which is theoretically unbiased with a correctly specified model160

(Snijders & Bosker, 2012).3 Many MLM software programs also provide asymmetric profile161

likelihood CIs and small-sample adjustments (e.g., Kenward & Roger, 1997) that improve the162

accuracy of estimations and inferences, which may not be available in MSEM software. Although163

Bayesian MSEM, currently only implemented in Mplus among general-purpose software, can give164

more numerically stable parameter estimates and fewer estimation convergence problems in small165

samples (Depaoli & Clifton, 2015; Zitzmann et al., 2016), researchers more familiar with the MLM166

framework may find it a hurdle switching to MSEM software just to account for the unreliability of167

observed cluster means. Therefore, in what follows, we introduce an alternative that (a) gives168

3 Cheung (2013) discussed ways to implement REML in the SEM framework using a transformation matrix or a
modified fitting function.
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between-cluster effect estimates comparable to LMC and (b) can be easily implemented in standard169

MLM software.170

Empirical Bayes Cluster-Mean Method (EBM) With Finite Population Correction171

As demonstrated in Shin and Raudenbush (2010), an alternative method that avoids the172

bias in the between-level coefficient is to include in the model the empirical Bayes (EB) estimates of173

the cluster means of 𝑋, also called the best linear unbiased predictors.4 When the model predicting174

𝑌 contains no other between-level covariates, the EB cluster mean can be computed as175

μ̂EB
𝑋 𝑗 = λ̂𝑋 𝑗𝑋. 𝑗 + (1 − λ̂𝑋 𝑗) γ̂00𝑋

where γ̂00𝑋 is the sample grand mean of 𝑋. For models assuming normally distributed random176

effects and errors, the EB estimate discussed in Shin and Raudenbush (2010) can be obtained using177

standard MLM software, but it does not adjust for finite population cluster sizes. However, finite178

population correction can be incorporated by defining (Grilli & Rampichini, 2011, equation 32,179

p. 12)180

λ̂𝑋 𝑗 =
τ̂2
𝑋

τ̂2
𝑋
+ σ̂2

𝑋
fpc 𝑗/𝑛 𝑗

(4)

so that when fpc 𝑗 → 0 or when 𝑛 𝑗 is large, the EB cluster means will be the same as the observed181

cluster means.182

When the model predicting 𝑌 contains between-level covariates C = (𝐶1, 𝐶2, . . .), including183

cluster means of level-1 covariates other than 𝑋, the EB means could be obtained by fitting the184

multilevel model185

𝑋𝑖 𝑗 = γ00𝑋 + C𝛄𝑋 + 𝑢0 𝑗𝑋 + 𝑒𝑖 𝑗𝑋, (5)

where 𝛄𝑋 is a column vector of fixed effect coefficients of the covariates predicting 𝑋. An additional186

requirement, not discussed in Shin and Raudenbush (2010), is to also include random slope187

components of level-1 covariates W = (𝑊1,𝑊2, . . .) to obtain the EB means, if those components188

4 Essentially the same procedure was proposed by Croon and van Veldhoven (2007), but in the context of predicting a
between-level outcome.
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will appear in the final model predicting 𝑌 . The model for obtaining the EB means thus becomes189

𝑋𝑖 𝑗 = γ00𝑋 + C𝛄𝑋 + 𝑢0 𝑗𝑋 +
𝑞∑︁
𝑠=1

𝑢𝑠 𝑗𝑋𝑊 𝑗 + 𝑒𝑖 𝑗𝑋 . (6)

The conditional reliability λ̂𝑋 𝑗 can be obtained using equation (4) but with the τ̂2
𝑋

and σ̂2
𝑋

190

estimates from the model in (5), and191

μ̂EB
𝑋 𝑗 = λ̂𝑋 𝑗𝑋. 𝑗 + (1 − λ̂𝑋 𝑗) ( γ̂00𝑋 + C�̂�𝑋), (7)

with γ̂00𝑋 and �̂�𝑋 being the sample estimates.192

One can either use μ̂EB
𝑋

in combination with 𝑋 to estimate the contextual and the193

within-cluster effects, or μ̂EB
𝑋

in combination with 𝑋 − μ̂EB
𝑋

to estimate the between- and194

within-cluster effects. The former has been demonstrated in a large data set to give very similar195

fixed effect estimates as LMC by Shin and Raudenbush (2010) without any finite population196

adjustment. Lüdtke et al. (2008) also conducted a simulation to compare EBM and LMC for197

estimating the between- and within-cluster effects without any random slopes and covariates, and198

found the two methods performed similarly in most conditions, but they implemented EBM under199

the MSEM framework with ML estimation, while we expect EBM using REML and200

likelihood-based CI will have better small sample performance.201

Gottfredson (2019) proposed an alternative correction approach for obtaining point202

estimates of the between-level coefficients, using the reliability information discussed above. We203

expect EBM and Gottfredson (2019)’s approach would give similar results for models without other204

between-level coefficients. On the other hand, EBM is more general as it can also correct for the205

unreliability of cluster means of other between-level covariates, and automatically provides206

corrected standard errors and confidence intervals (CIs).207

Correcting for Bias in Estimated Random Intercept Variance208

Although EBM corrects for the bias in the estimated between-cluster coefficient due to209

measurement error in the observed cluster means, like CM, it overestimates τ2
0 . The reason is that210



EMPIRICAL BAYES MEANS WITH FPC 11

μ̂EB
𝑋

, being a shrinkage estimate, has a variance that is systematically smaller than that of μ𝑋.211

Indeed, one can show that the naive estimate of τ2
0 under EBM is the same as that under CM. As212

shown in the Appendix, a consistent estimate of τ2
0 can be obtained as213

τ̂2
0 = τ̂2∗

0 − (1 − ¯̂
λ) ( γ̂01 − γ̂10)2 τ̂2

𝑋,

where τ̂2∗
0 is the naive estimate of τ2

0 when using μ̂EB
𝑋

as a proxy of μ𝑋, and ¯̂
λ is the average214

estimated reliability of cluster means.215

Despite the simplicity of EBM compared to LMC and its improvement over conventional216

CM, CM remains the dominant method in MLM.5 The implication is that, when estimating217

between-level or contextual effects, researchers have to assume either (a) no sampling error in the218

observed cluster means as in CM, which only happens when the within-cluster units are completely219

homogeneous (i.e., σ2
𝑋
= 0) or when all units in a cluster have been sampled (i.e., 𝑛pop = 𝑛), or (b)220

infinitely large population cluster sizes as in LMC, which does not hold when clusters have finite221

sizes (e.g., students in schools or classrooms). On the other hand, using EBM with FPC allows one222

to incorporate information on population cluster sizes, which conceptually subsumes LMC223

(fpc2 = 1) and CM (fpc2 = 0) as special cases.224

Current Studies225

In this paper, we present the designs and results of two simulation studies to examine the226

performance of EBM. The main manipulated factors are sampling fraction within clusters, random227

effect variances of 𝑋 (τ2
𝑋

), and average cluster size. We expect LMC, which assumes an infinite228

population, to have the best performance when the sampling fraction is 0, but have increasingly229

biased estimates of the between-cluster effects when the sampling fraction increases. On the other230

hand, we expect EBM with FPC to maintain similar performance across different sampling231

fractions. As shown in equation (2), smaller τ2
𝑋

and average cluster size correspond to lower232

reliability of cluster means, so we expect all methods to perform worst in those conditions, and the233

bias would be enlarged for LMC and EBM without FPC when the assumption of an infinite234

5 For example, a quick survey of recent MLM textbooks used in social and behavioral sciences (Heck & Thomas, 2020;
Hox et al., 2018; Luke, 2020; Snijders & Bosker, 2012) found only discussions of CM, but not EBM.
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population does not hold.235

To increase the generalizability of our simulation results, we also vary the number of236

clusters, random intercept variance of 𝑌 (τ2
0), and imbalance of cluster sizes. We expect estimation237

with EBM and other methods to be more challenging for conditions with fewer clusters and238

unbalanced cluster sizes, as well as when τ2
0 is small as it means limited information in the239

between-cluster level.240

In Study 1, we compare CM, EBM, and LMC using a model with one level-1 (within-cluster)241

predictor with its cluster means; the level-1 coefficients vary across clusters (i.e., random slopes),242

and the sample units are drawn from clusters with finite sizes so that we can evaluate the243

incorporation of FPC into EBM. In Study 2, to imitate the model complexity in typical MLMs, we244

add one within-cluster and one between-cluster covariates into the model, and evaluate how EBM245

recovers the parameters associated with the predictors and the cross-level interaction.246

Study 1247

In Study 1, we compare CM, EBM, and LMC approaches in terms of parameter bias, the248

accuracy of statistical inference, and efficiency for estimating the between-level effect. As suggested249

by an anonymous reviewer, in order to isolate the impact of using different approaches for cluster250

means, we should compare the methods using the same estimation methods and CI procedures as251

much as possible. Given that different software programs are used for CM and EBM (lme4 in R)252

and for LMC (Mplus), and REML and likelihood-based CIs are not implemented in Mplus, we use253

ML estimation and Wald confidence intervals for all three approaches.6 We discuss how the use of254

REML and likelihood-based CIs can improve upon these simulation results later in the paper.255

We simulate data with both infinite and finite population cluster sizes with varying256

sampling fractions (i.e., the ratio of sample cluster size to population cluster size). Previously, for257

models without random slopes, Lüdtke et al. (2008) and Grilli and Rampichini (2011) showed that258

CM outperformed LMC when the sampling fraction is large, so we expect similar results here with259

random slopes.260

6 However, this does not control for different software using different numerical algorithms and convergence criteria to
find ML solutions.
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The simulation data are generated using equation (1). For all conditions, we set the mean261

of 𝑋 to 1, γ00 = 0 and σ2
𝑋

= σ2 = 1 without loss of generality. We set γ01 = -0.3 and γ10 = 0.7 for262

a large discrepancy between the two coefficients, which is similar to the well-studied263

big-fish-little-pond effect (Marsh & Parker, 1984). We also simulate cluster sizes to be unbalanced:264

the 𝐽 clusters are divided into five strata, each with 𝐽/5 clusters, and the cluster sizes are 𝑛/5, 3𝑛/5,265

𝑛, 7𝑛/5, 9𝑛/5, respectively, so that the ratio of the largest to the smallest cluster sizes is 9 to 1. For266

example, when 𝐽 = 100 and 𝑛 = 25, the cluster sizes are 𝑛 = 5, 15, 25, 35, 45, each for 20 clusters.267

The other design factors for data generation are described below.268

Design Conditions269

Random Intercept Variance of 𝑌 (τ2
0) and Random Slope Variance (τ2

1)270

The conditional random intercept variance of 𝑌 is set to either 0.10 or 0.40. Thus, the271

conditional intraclass correlation (ICC) is either .09 or .28, which are on the low and high ends of272

values typically seen in cross-sectional data (Hedges & Hedberg, 2007). The random slope variance273

is τ2
1 = τ2

0/4, similar to some other simulation studies (e.g., Kwok et al., 2007).274

Random Intercept Variance of 𝑋 (τ2
𝑋

)275

The random intercept variance of 𝑋 is set to 0.05, 0.25, and 1.0, so the corresponding ICCs276

for 𝑋 are .05, .20, .50. Note that ICC𝑋 = .50 is larger than the maximum value (.30) used in Lüdtke277

et al. (2008), and we expect that the between-level effect estimates will be more stable when the278

predictor has more variance at the between level.279

Number of Clusters (𝐽)280

Previous simulations on LMC have relied on large numbers of clusters, with 𝐽 between 50281

and 500 in Lüdtke et al. (2008) and 𝐽 = 500 in Asparouhov and Muthén (2019). Lüdtke et al.282

(2008) found that LMC showed biases generally for conditions with 𝐽 = 50, which could be due to283

the sample size requirement for LMC (see also Kelcey et al., 2021). We expect that EBM will yield284

more stable estimates in small 𝐽 conditions common in MLM. Thus, we simulate data with 𝐽 = 20,285

50, or 100. With frequentist analyses, we expect to see downward biases in estimates of τ2
0 when286

𝐽 = 20, based on previous literature (e.g., Maas & Hox, 2005).287
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Average Cluster Size (𝑛)288

We set 𝑛 to either 5 or 25, which covers a similar range used in Lüdtke et al. (2008).289

Sampling Fraction (SF)290

We assume that the population size is constant across clusters, so with unbalanced cluster291

sizes, the sampling fraction is not constant across clusters. Instead, we define SF as the ratio of 𝑛 to292

the population cluster size. The conditions are 0 (infinite population), .2, and .5.293

Data Generation and Analyses294

The Monte Carlo simulation is structured using the R package SimDesign (Chalmers &295

Adkins, 2020). For all conditions, we simulated the between- and the within-level components of 𝑋296

and all error terms from independent normal distributions. For conditions with SF > 0, we first297

simulated 20 sets of finite populations; the finite population size was 𝑛/SF for each cluster. The298

sample units in the simulated data were drawn without replacement. Therefore, at the cluster level,299

the sampling fractions ranged from SF/5 (when 𝑛 𝑗 = 𝑛 / 5) to 9 × SF/5 (when 𝑛 𝑗 = 9 𝑛 / 5). For300

each finite population, we simulated 100 replication data sets, so the number of replications was301

2,000 per condition.302

We analyzed each simulated data set using CM, EBM, EBM-FP (i.e., EBM with FPC), and303

LMC. Including EBM without FPC allows us to evaluate the impact of incorporating FPC. For304

CM, EBM, and EBM-FP, we used the R package lme4 (Bates et al., 2015) to obtain ML estimates305

for γ01, γ10, and τ2
0 , as well as the corresponding Wald CIs. For LMC, we used Mplus 8.8 to fit a306

two-level multilevel SEM model with ML estimation using the “hybrid” approach, and obtained307

95% Wald CIs (i.e., estimate ± 1.96 ŜE) for the same three parameters. We used the MODEL308

CONSTRAINT routine to obtain estimates of the between-level coefficient (γ01) by adding together309

the estimated contextual effect and the estimated within-level effect.310

For each method in each replication, we computed (empirical) bias, root mean squared error311

(RMSE), and the coverage rates of 95% CIs. However, from an initial summary of the results, we312

found that the parameter estimates were highly unstable for conditions with small τ2
0 or τ2

𝑋
, and313

reporting the mean across 2,000 replications may result in biases of > 10,000 for some conditions314
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due to a few extreme outliers. To avoid the influence of extreme outliers, we instead computed315

robust versions of bias and RMSE using 20% trimmed means (Wilcox, 2017), which was a good316

compromise between the arithmetic mean (or 0% trimmed mean, which is highly sensitive to317

outliers) and the median (or 100% trimmed mean, which is robust but inefficient for normally318

distributed data).319

For a sample estimate θ̂ estimating parameter θ, the bias was computed as ¯̂
θ − θ, where ¯̂

θ is320

the 20% trimmed mean of the θ̂ estimates across replications. The robust RMSE was computed as321 √︃
B̂ias

2
+ [MAD( θ̂)]2, where MAD( θ̂) was the sample median absolute deviation (from the median322

with a scale factor of 1.4826) of the 2,000 θ̂ estimates. The RMSE indicated the typical distance of323

θ̂ from the generated value of θ, and methods that yield smaller RMSEs should be preferred.324

To evaluate the performance of the CIs, we computed the coverage rate as the proportion of325

replications where θ was inside the sample CI.326

Results327

We first consider the proportion of outliers when estimating γ01 (the between-cluster328

coefficient) as an indicator of the numerical stability of the three methods. Outliers were identified329

based on the boxplot method (Chambers et al., 1983/2018). The proportions of outlying γ̂01330

estimates were 0.98% for CM, 3.53% for EBM, 3.10% for EBM-FP, and 2.83% for LMC,331

respectively. Extreme estimates were more common with EBM and LMC when the reliability of the332

cluster means, λ̂𝑋 𝑗 , was small (i.e., when τ2
𝑋

= .05 and 𝑛 = 5), in which case the proportion of333

outliers were up to 9.55% to 10.15% for EBM, EBM-FP, and LMC, compared to 1.90% for CM.334

For LMC, EBM, and EBM-FP, estimation was more challenging for conditions with 𝑛 = 5335

and τ2
𝑋
= 0.05, where the reliability of the cluster means was low. Therefore, we present results for336

these conditions first in Table 1. When the EB cluster means could not be computed due to the337

REML/ML estimates of τ2
𝑋

being zero, results are inadmissible for EBM and EBM-ML.338

Proportions of inadmissible results were especially high (> 80%) for conditions with few clusters339

and large SF. When considering only the admissible results, when SF = 0, EBM-FP had slightly340

smaller bias than LMC when 𝐽 = 20; all methods gave severely biased estimated between-level341
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coefficients in other conditions, and CM was the most stable when SF = 0.5.342

Figure 1 compares the parameter bias (γ̂01, τ̂2
0 , and τ̂2

1) from all four methods for the343

remaining conditions. As expected, CM yielded biased estimates of γ01 when the reliability of the344

cluster means was small, with magnitudes close to the analytic results (i.e., [γ10 − γ01] λ̂𝑋 𝑗).7 When345

SF = 0, EBM (bias between -0.18 and 0.01; RMSE ≤ 1.34) and LMC (bias between -0.2 and 0.01;346

RMSE ≤ 1.40) showed smaller biases than CM for most conditions. Consistent with the results by347

Lüdtke et al. (2008), when SF > 0, LMC and EBM, which assumed infinte population cluster sizes,348

underestimated γ01 especially when λ̂𝑋 𝑗 was small (with magnitudes up to 1); EBM-FP, which used349

finite population corrections, showed much less bias (magnitudes up to 0.24). Also, EBM showed350

better estimates of τ̂2
0 and τ̂2

1 than LMC.351

For coverage, as shown in Figure 2, EBM-FP generally gave CIs closed to nominal coverage352

for γ01 for conditions with either 𝑛 = 25 or τ2
𝑋
≥ 0.25, but it had suboptimal coverage rates of353

around 80 to 90% for τ2
0 and τ2

1 in smaller samples (i.e., 𝐽 ≤ 50 or 𝑛 = 5), which is likely due to the354

use of Wald CIs and can be improved with likelihood-based CIs as shown later in the paper. LMC355

showed suboptimal coverage for γ01 with nonzero SF due to the parameter bias, but had better356

coverage rates than EBM-FP when SF = 0.357

Study 2358

In Study 2, we compare the performance of CM, EBM, and LMC when the data-generating359

model also contains a between-level covariate and a within-level covariate (𝑍 and 𝑊 , respectively),360

and a cross-level interaction between μ𝑋 and 𝑊 . The data-generating model is361

𝑌𝑖 𝑗 = γ00 + γ10(𝑋𝑖 𝑗 − μ𝑋 𝑗) + γ01μ𝑋 𝑗 + γ02𝑍 𝑗 + γ20𝑊𝑖 𝑗 + γ21μ𝑋 𝑗𝑊𝑖 𝑗 + 𝑢0 𝑗 + 𝑢2 𝑗𝑊𝑖 𝑗 + 𝑒𝑖 𝑗 ,

where Var(𝑢0 𝑗) = τ2
0 = 0.4 − γ2

01 and Var(𝑢2 𝑗) = τ2
2 = .05. We manipulated {γ10, γ01} to be either362

{0.4,−0.2} or {0.1, 0.3}. The other manipulated variables were 𝐽 and 𝑛, each with the same levels as363

in Study 1. In addition, we also simulated data to have balanced or unbalanced cluster sizes as in364

Study 1. For all conditions we set γ02 to 0.5, γ20 to 0.3, and γ21 to 0.2. Both 𝑊 and 𝑍 had variance365

7 For example, when τ2
𝑋

= 0.05 and 𝑛 = 25, λ𝑋 𝑗 = 0.56, so the expected bias is 0.56.
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of 1.0. We also allowed 𝑋 (𝑤) = 𝑋 − μ𝑋 to covary with 𝑊 and μ𝑋 to covary with 𝑍 by simulating366

μ𝑋 𝑗 = 0.5 + 0.3𝑍 𝑗 + 𝑢𝑋0 𝑗 ,

𝑋
(𝑤)
𝑖 𝑗

= 0.5𝑊𝑖 𝑗 + 𝑒𝑋𝑖 𝑗 ,

where the conditional variances of 𝑢𝑋0 𝑗 and 𝑒𝑋𝑖 𝑗 were .91τ2
𝑋

and .75, so that the total variances of367

μ𝑋 𝑗 and 𝑋
(𝑤)
𝑖 𝑗

were the same as in Study 1.368

The added complexity makes the data-generating model better resemble the multilevel369

models used in applied research, compared to the models used in Lüdtke et al. (2008) and Lüdtke370

et al. (2011), which contained only the between- and within- components of 𝑋 with no other371

covariates.372

Results373

Like in Study 1, all methods run into issues in conditions with small cluster mean reliability374

(i.e., 𝑛 = 5 and τ2
𝑋

= 0.05), so we first presented parameter bias for those conditions in Figure 3.375

We only presented results for conditions with {γ10, γ01} = {0.4, -0.2} in the main text, as the bias376

pattern was similar (but in the opposite direction) for conditions with {γ10, γ01} = {0.1, 0.3},377

which can be found in the supplemental material. The parameters include the between-cluster effect378

of 𝑋 (γ̂01), the coefficient of the level-2 covariate (γ̂02), the cross-level interaction (γ̂21), and the379

variance components (τ̂2
0 and τ̂2

1). As shown in the figure, CM produced biased estimates for the380

fixed-effect coefficients; while EBM and LMC gave less biased estimates, the bias was still381

substantial. Also, like in Study 1, LMC provided biased estimates of τ2
0 and τ2

1 .382

Figure 4 shows the bias of parameter estimates for conditions with either 𝑛 = 25 or τ2
𝑋

>383

0.05. In summary, EBM and LMC gave mostly unbiased estimates except for a few conditions with384

a small population τ2
0 . Figure 5 further shows that EBM and LMC generally yielded reasonable CI385

coverage for the fixed effect parameters, but similar to Study 1, the coverage rates for EBM with τ2
0386

and τ2
1 were suboptimal, which could again be due to the use of Wald CIs. We investigated this in387

the supplemental simulations, as described in the next section.388
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Better Estimation and CIs with EBM and LMC389

As noted before, the EBM and LMC results might be improved by using different390

estimation and/or CI construction methods. In the case of EBM, switching from ML to REML391

estimation likely reduces bias in small samples (Hox et al., 2018), and using likelihood-based (LB)392

CIs instead of Wald CIs likely improves coverage rates (Bates et al., 2015). For LMC, the sandwich393

estimator for the standard errors is used by default in Mplus (with “ESTIMATOR=MLR”), which394

might improve CI coverage when normality does not hold. More recently, Asparouhov and Muthén395

(2019) suggested using Bayesian estimation with LMC to improve estimation when random slopes396

are present.397

Boundary-Avoiding EBM398

As shown in the results, an issue of EBM is that μ̂EB
𝑋

depends on τ̂2
𝑋

, which is often399

estimated to be 0 in situations with small sample sizes (e.g., Snijders & Bosker, 2012). When400

τ̂2
0 = 0, λ̂𝑋 𝑗 becomes 0, μ̂EB

𝑋 𝑗
becomes linearly dependent on C (or becomes a constant if there are no401

C in the model), and the model is not estimable. One solution, suggested by Chung et al. (2013), is402

to use a penalized likelihood estimator for the variance components to avoid a zero estimate. This403

estimator is equivalent to one using the Bayesian posterior mode of τ2
0 with a weakly informative404

gamma prior distribution, and is implemented in the R package blme (Chung et al., 2013). Given405

that the penalized likelihood estimator has not been widely studied in the MLM literature but is406

useful for the EBM approach, in our simulation studies, we include a version of EBM that estimates407

μ̂EB
𝑋 𝑗

with penalized likelihood, and label this approach boundary-avoiding EBM (EBM-BA).408

Additional Results409

To examine whether using alternative estimation CI construction methods improves EBM410

and LMC, we also compared four additional methods: (a) EBM-REML-FP, EBM with REML, LB411

CI, and finite population correction, (b) EBM-BA-FP, same as (a) but with boundary-avoiding412

priors when obtaining EB cluster means, (c) LMC-MLR, and (d) LMC-BAYES, using the same413

conditions as in Studies 1 and 2. As expected, results showed that EBM-REML-FP improved over414

EBM with ML and Wald CIs in terms of parameter bias and CI coverage rates, although it had415

similar convergence issues in conditions with low cluster-mean reliability. The coverage rates with416
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EBM-REML-FP were close to 95% for most conditions and parameters, except for γ01 and τ2
0 in417

conditions with τ2
𝑋

= 0.05. On the other hand, EBM-BA-FP had 100% convergence rates in all418

conditions and performed similarly to EBM-REML-FP in conditions with large samples and high419

cluster-mean reliability. More importantly, it showed less bias than other EBM and LMC methods,420

including LMC-BAYES, for estimating the γ01 (between-cluster effects) in conditions with low421

cluster-mean reliability when SF ≥ 0.2. We also found EBM-BAYES generally had less bias than422

LMC-ML and LMC-MLR in estimating γ01, but it generally overestimated τ2
0 and τ2

1 . The423

exception for the improved performance of EBM-BA-FP and LMC-BAYES is in conditions with 𝑛 =424

5, τ2
𝑋

= 0.05, 𝐽 = 20, and SF = 0, as they showed more bias than other methods for estimating γ01.425

Overall, the supplemental results showed that using EBM with REML estimation, LB CI,426

and FPC generally gave satisfactory results. When there are convergence problems, we suggest427

computing the EB means using boundary-avoiding priors, which is also available in the R function428

discussed below.429

Empirical Illustration430

To demonstrate EBM, we revisit the classic example from Raudenbush and Bryk (2002)431

based on a subset of the High School and Beyond Study of 1980. The data, which has 7,185432

students from 160 schools, was also used for demonstration in Shin and Raudenbush (2010).433

Specifically, we consider the following model:434

MATH𝑖 𝑗 = γ00 + γ10(SES𝑖 𝑗 − SES 𝑗) + γ01SES 𝑗 + γ02SECTOR 𝑗

+ 𝑢0 𝑗 + 𝑢1 𝑗 (SES𝑖 𝑗 − SES 𝑗) + 𝑒𝑖 𝑗 ,

where SECTOR was the school sector (0 = public, 1 = Catholic) and SES was a standardized435

composite variable representing students’ socioeconomic status. The data set also contains a SIZE436

variable that indicates school enrollment. Therefore, the data of each school can be considered a437

sample from a finite population. The sample school sizes ranged between 14 and 67 with a mean of438

44.90, while the school enrollment ranged between 100 and 2713; the sampling fractions ranged439

between 0.01 and 0.41 across clusters, with an overall sampling fraction of 0.04, so the need for finite440

population corrections is small. A snapshot of the data is shown in Figure 6. Because the cluster441
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sizes were relatively large, the reliability of the cluster means of SES was high (median reliability =442

.94, range = .81 to .95), so the observed cluster means were similar to the EB cluster means.443

We first fit a CM model with observed cluster means of SES (for between-level prediction)444

and cluster-mean centered SES (for within-level prediction) with the R package lme4, and then445

compared the results to those using EBM (with and without finite population corrections) and446

LMC with Mplus. To run EBM, researchers can use the lmer_ebm() R function in the447

supplemental material, with the following sample syntax:448

lmer_ebm(MATHACH ~ SES_ebm + SES_ebmc + SECTOR + (SES_ebmc | ID),

data = hsb, formulax = SES ~ SECTOR + (1 | ID),

pop_clus_size = hsb$SIZE)

where the variables SES_ebm and SES_ebmc are not in the original data but are EB estimates of449

cluster means and the EB mean-centered variables created by the function. In the input for450

formulax, we specified SES as the variable to have the EB cluster means computed across clusters451

(the membership of which is named ID in the data set), with any cluster-level covariates included452

(SECTOR in this case). Therefore, if researchers are interested in the between-level effect of a level-1453

predictor named pred in the data, they can specify pred_ebm and pred_ebmc in the model formula.454

The function also returns a corrected estimate of the intercept variance (τ2
0). Based on the455

simulation results, we expect EBM and LMC to give similar results and CM to give slightly biased456

results. As shown in Table 2, CM gave the smallest estimate for the between-level coefficient for457

SES (γ01), which also led to the largest estimate for the coefficient of SECTOR (γ02). It also458

resulted in the largest estimate of τ2
0 due to the downward bias in the between-level coefficient for459

SES. Such results are consistent with our simulations showing CM to be biased. On the other hand,460

EBM gave a larger estimate of γ01 as it corrected for the measurement error in the cluster means of461

SES, but a smaller estimate of γ02. With FPC, the estimate of γ01 was slightly smaller while that462

of γ02 was slightly larger. LMC also gave a larger γ01 estimate, and consistent with our simulation463

results, the estimates of τ2
0 and τ2

1 with LMC were smaller and likely underestimates.464

While the difference between CM and EBM was relatively small in this example, as465
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demonstrated in our simulations and in Lüdtke et al. (2008), the difference could be substantial466

when the cluster sizes are small. Similarly, the effect of correcting for finite population sizes would467

be more prominent when the sampling fraction is relatively large, such as when a majority of468

students in a school are sampled. Indeed, if all units in a cluster are sampled, CM is a better choice469

as the sample cluster means are also the population cluster means.470

Discussion471

As multilevel modeling (MLM) has become a standard technique in researchers’ toolboxes,472

it is important to ensure that researchers are aware of different analytic issues, including the best473

practices for separating between and within effects and estimating contextual effects. However, a474

recent review of research in organizational science and applied psychology (Antonakis et al., 2021)475

showed that only about half (106 out of 204) of the reviewed articles included the cluster means of476

level-1 predictors in a multilevel analysis. While recent research has proposed using latent cluster477

means (e.g., Asparouhov & Muthén, 2019; Lüdtke et al., 2008) with a multilevel structural equation478

modeling framework—as opposed to the observed group means traditionally used in MLM, there479

have been limited empirical studies on the performance of using latent cluster means in small480

samples and in models with random slopes and covariates. Also, researchers may not be aware of481

the assumption underlying the latent cluster mean approach, namely that the sampled units of a482

cluster represent a small fraction of the population units of that cluster, which may not always be483

appropriate in applied research.484

Drawing from the existing methodological literature, we propose the use of empirical Bayes485

cluster means (EBM) with finite population corrections to obtain consistent estimates of486

between-level effects (with centering of the level-1 predictor) and contextual effects (without487

centering). A correction on the estimated level-2 variance is also discussed. The EBM approach488

takes into account the population cluster sizes and thus subsumes both the case of negligible (as in489

latent cluster means) and non-negligible (as in observed group means) sampling fractions. In a490

series of simulation studies, it is shown that EBM, like the latent cluster-mean approach, gives491

consistent estimates (with respect to increasing numbers of clusters) of between-level effects when492

the ratio of sample cluster size to the population cluster size is large. The estimation and inferences493
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with EBM can be improved by using restricted maximum likelihood and likelihood-based confidence494

intervals. It is also found that for models with random slopes, when cluster size is five or fewer and495

the ICC of the predictor is < .05, all approaches examined in this paper lead to highly unstable and496

biased parameter estimates. While the boundary-avoiding EBM approach helped mitigate the bias,497

the bias was still substantial. Future research can explore multilevel bootstrap methods (Lai, 2020;498

van der Leeden et al., 2008) as alternatives for correcting biases in coefficients.499

It is shown that the need for finite-population correction is highest when the population500

cluster size is small and the sampling fraction is high. To facilitate the use of the proposed method,501

we also provide an R function lmer_ebm() that automates the computational steps for using EBM,502

and provide a real-data example using the classic High School and Beyond survey data set. While503

the provided function only works with the R package lme4, one can obtain EBM using equation (7)504

with any multilevel software.505

There are several limitations of the current study that deserve attention in future studies.506

First, while we dealt with the basic case where only one between-level effect or contextual effect is507

of interest, which is fairly common in practice, future research can explore how the proposed508

method can be extended to handle multiple such effects. Second, the present paper only concerns509

the error due to approximating the population cluster means with the sample means, which510

happens in standard multilevel modeling applications. However, as shown in Lüdtke et al. (2011),511

the latent means approach with multilevel structural equation modeling can also handle512

measurement error on the individual predictor scores. Theoretically, the empirical Bayes estimate513

can also incorporate unreliability due to such measurement error (e.g., Zitzmann, 2018) Lai, 2021,514

assuming that an estimate of the reliability of the individual scores is known. Future research can515

further explore this extension and compare it with the latent means approach.516

In addition, our discussion is limited to two-level models; there is additional complexity for517

defining cluster means in three-level and crossed designs (Brincks et al., 2017); Lai, 2019, and the518

potential need for finite population corrections at more than one level. Finally, the proposed519

method can be extended to cluster means of binary predictors, with which the cluster-mean520
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reliability depends not only on the cluster size but is also a function of the cluster mean estimate,521

as well as to generalized linear mixed models with nonnormal outcome variables.522
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Table 1
Inadmissible Solutions and Bias of Between-Level Coefficients in Low
Cluster-Mean Reliability Conditions of Study 1.

% Inadmissiblea Bias for γ01

𝑛 τ2
𝑋

𝐽 SF τ2
0 EBM CM EBM EBM-FP LMC

5 0.05 20 0 0.1 36.25 0.83 0.03 0.03 0.19
0.4 36.05 0.85 0.00 0.00 0.02

0.2 0.1 54.40 0.80 -0.77 -0.41 -0.20
0.4 53.45 0.82 -0.81 -0.46 -0.48

0.5 0.1 88.25 0.71 -3.91 -0.56 -1.16
0.4 87.55 0.76 -4.47 -0.74 -1.91

50 0 0.1 18.55 0.83 -0.07 -0.07 0.03
0.4 18.55 0.85 -0.07 -0.07 -0.22

0.2 0.1 42.75 0.79 -1.82 -1.18 -0.63
0.4 42.80 0.82 -1.80 -1.19 -1.33

0.5 0.1 93.45 0.70 -9.78 -1.44 -1.70
0.4 93.55 0.75 -9.53 -1.40 -3.83

100 0 0.1 8.55 0.84 -0.14 -0.14 -0.06
0.4 8.60 0.86 -0.13 -0.13 -0.12

0.2 0.1 34.60 0.80 -2.03 -1.32 -0.84
0.4 34.60 0.82 -1.91 -1.27 -1.58

0.5 0.1 98.15 0.71 -17.58 -2.52 -1.98
0.4 98.20 0.76 -17.33 -2.67 -4.78

Note. aResults are admissible for all replications in CM and LMC. True γ01 =
0.7 in the data generating model.
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Table 2
A Comparison of Different Estimation Approaches for the Empirical
Illustration.

term CM EBM EBM (FPC) LMC
Intercept 12.06 (0.20) 12.09 (0.20) 12.09 (0.20) 12.08 (0.21)
SES (Between) 5.25 (0.37) 5.47 (0.40) 5.45 (0.39) 5.58 (0.39)
SES (Within) 2.19 (0.13) 2.20 (0.13) 2.20 (0.13) 2.20 (0.13)
SECTOR 1.37 (0.31) 1.31 (0.31) 1.31 (0.31) 1.34 (0.38)
τ2

0 2.39 2.30 2.31 2.26
τ2

1 0.70 0.70 0.70 0.46
σ2 36.71 36.71 36.71 36.78

Note. CM = Observed cluster mean approach. EBM = Empirical Bayes
mean approach. FPC = with finite population correction. LMC = Latent
mean centering (hybrid approach in Mplus).
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Figure 1
Bias for parameter estimates in Study 1. The panels show, from top to bottom, the between-cluster
effect, the conditional random intercept variance of the outcome, and the random slope variance.
CM, EBM, and LMC represents analyses with observed, Empirical Bayes, and latent means as
covariate. EBM-FP = EBM with finite population corrections. Conditions with average cluster size
= 5 and τ2

𝑋
= 0.05 are not shown (see Table 1).
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Figure 2
Empirical coverage for Study 1 (all conditions). The panels show, from top to bottom, the between-
cluster effect, the conditional random intercept variance of the outcome, and the random slope
variance. CM, EBM, and LMC represents analyses with observed, Empirical Bayes, and latent
means as covariate. EBM = EBM with maximum likelihood estimation and 95% Wald intervals.
EBM-FP = EBM with finite population corrections. The dashed line represents the 95% reference
rate.
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Figure 3
Bias of parameter estimates in Study 2 for conditions with low cluster mean reliability (i.e., average
cluster size = 5 and τ2

𝑋
= 0.05). The panels show the between-cluster effect (γ01), the effect of the

level-2 covariate (γ02), the cross-level interaction (γ21), the conditional random intercept variance
of the outcome (τ2

0), and the random slope variance (τ2
1). CM, EBM, and LMC represents analyses

with observed, Empirical Bayes, and latent means as covariate.
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Figure 4
Bias of parameter estimates in Study 2 for conditions with average cluster size = 25 or τ2

𝑋
≥

0.25. The panels show the between-cluster effect (γ01), the effect of the level-2 covariate (γ02), the
cross-level interaction (γ21), the conditional random intercept variance of the outcome (τ2

0), and
the random slope variance (τ2

1). CM, EBM, and LMC represents analyses with observed, Empirical
Bayes, and latent means as covariate.
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Figure 5
Empirical coverage for Study 2. The panels show the between-cluster effect (γ01), the effect of the
level-2 covariate (γ02), the cross-level interaction (γ21), the conditional random intercept variance of
the outcome (τ2

0), and the random slope variance (τ2
1). The dashed line represents the 95% reference

rate. CM, EBM, and LMC represents analyses with observed, Empirical Bayes, and latent means as
covariate.
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Figure 6
A snapshot of the data for the empirical illustration, including the observed and empirical Bayes
cluster means and the cluster-mean reliability.
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Appendix

Deriving a Consistent Estimate of τ2
0 Under EBM

Consider a random intercepts model at the population level639

𝑌𝑖 𝑗 = γ00 + γ10(𝑋𝑖 𝑗 − μ𝑋 𝑗) + γ01μ𝑋 𝑗 + 𝑢0 𝑗 + 𝑒𝑖 𝑗

where 𝑢0 and 𝑒 are assumed independent and independent to μ𝑋 𝑗 and both have zero means, and640

the variance of 𝑢0 is τ2
0 . This between-within model can be reparameterized as an equivalent641

contextual model642

𝑌𝑖 𝑗 = γ00 + γ10𝑋𝑖 𝑗 + (γ01 − γ10)μ𝑋 𝑗 + 𝑢0 𝑗 + 𝑒𝑖 𝑗 .

Let τ2
𝑋

be the variance of μ𝑋. The above model implies that the partial variance of 𝑌 accounted for643

by the group mean, μ𝑋, is τ2
𝑋
(γ01 − γ10)2, after conditioning on 𝑋𝑖 𝑗 .644

In EBM, when the empirical Bayes estimate of the group mean, μ̂EB
𝑋 𝑗

, is used in place of μ𝑋 𝑗 ,645

the proportion of variance of 𝑌 it accounts for is attenuated to the extent that μ̂EB
𝑋 𝑗

is not a646

perfectly reliable measurement of μ𝑋 (i.e., λ 𝑗 < 1). Because the variance of μ̂EB
𝑋 𝑗

is λ 𝑗 τ
2
𝑋

, it follows647

that the partial variance of 𝑌 accounted for by μ̂EB
𝑋 𝑗

is λ 𝑗 τ
2
𝑋
(γ01 − γ10)2, which is smaller than that648

by μ𝑋. The difference, (1 − λ 𝑗)τ2
𝑋
(γ01 − γ10)2, will be added to the random intercept variance of 𝑌 .649

Therefore, the random intercept variance estimate of 𝑌 under EBM converges to650

τ2∗
0 = τ2

0 + (1 − λ) (γ01 − γ10)2τ2
𝑋 .

As under EBM, the sample ML and REML estimates λ̂, γ̂01, γ̂10, and τ2
𝑋

are consistent, a651

consistent estimator of τ2
0 can be obtained as652

τ̂2∗
0 − (1 − λ̂) ( γ̂01 − γ̂10)2 τ̂2

𝑋 .
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