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Abstract

There has been increased interest in practical methods for integrative analysis of data from

multiple studies or samples, and using factor scores to represent constructs has become a

popular and practical alternative to latent variable models with all individual items.

Although researchers are aware that scores representing the same construct should be on a

similar metric across samples—namely they should be measurement invariant—for

integrative data analysis, the methodological literature is unclear whether factor scores

would satisfy such a requirement. In this note, we show that even when researchers

successfully calibrate the latent factors to the same metric across samples, factor

scores—which are estimates of the latent factors but not the factors themselves—may not

be measurement invariant. Specifically, we prove that factor scores computed based on the

popular regression method are generally not measurement invariant. Surprisingly, such

scores can be noninvariant even when the items are invariant. We also demonstrate that

our conclusions generalize to similar shrinkage scores in item response models for discrete

items, namely the expected a posteriori scores and the maximum a posteriori scores.

Researchers should be cautious in directly using factor scores for cross-sample analyses,

even when such scores are obtained from measurement models that account for

noninvariance.

Keywords: factor scores, measurement invariance, multiple-group analysis, shrinkage
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Are Factor Scores Measurement Invariant?

With an abundance of methodological research in the past few decades (e.g., Horn

& McArdle, 1992; Luong & Flake, 2022; Meredith, 1964; Millsap, 2011; Widaman & Reise,

1997), social and behavioral scientists generally acknowledge that at least some degree of

measurement invariance is needed for comparing observed scores (e.g., scale scores and sum

scores) across groups. While full invariance is commonly violated, when only a subset of

items is noninvariant and the others are invariant, one can fit a partial invariance model to

obtain valid group comparisons on the latent parameters (e.g., Byrne et al., 1989; Lai et

al., 2019; Shi et al., 2019). One can further obtain inferences on latent variables across

groups by joint estimation of the structural parameters of the latent variables (e.g., group

means, linear associations among latent variables) and the measurement parameters with

the necessary full or partial invariance constraints.

The joint estimation approach, however, typically requires a model with many

parameters (e.g., when there are many groups or many items), and as a result, some

researchers have proposed and adopted an alternative strategy by first computing

estimated factor scores as proxies for the latent variables, and then fitting a structural

model among those factor score variables. For example, Curran and Hussong (2009)

proposed the integrative data analysis framework for harmonizing measures from different

studies and samples, and they recommended computing factor scores from each sample for

subsequent inferences. Factor scores are also useful for making decisions at the individual

level, such as for selecting top-ranked individuals on aptitude tests or contributing to the

diagnosis of mental conditions (Lai et al., 2019; Millsap & Kwok, 2004).

However, there seems to be a conception, among both applied researchers and

methodologists, that one can improve upon sum scores by computing factor scores from a

partial invariance model, as the factor scores will be free of systematic measurement bias

and can be validly compared across groups. For example, when Curran and Hussong

(2009) recommended researchers assess measurement invariance across samples and then
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calculate person scores “by using one of several available factor score estimates in the

factor model” (p. 97; see also Bauer & Curran, 2016; Curran et al., 2014, 2016;

Davoudzadeh et al., 2020); subsequent applied research generally follows such a practice of

using factor scores after invariance testing (e.g., Luningham et al., 2019; MacDonald &

Park, 2022; Zhao et al., 2022). McNeish (2022), on discussing a potential benefit of using

factor scores over sum scores, suggested that “it would not make sense to compare sum

scores across populations” when invariance is violated, but “[F]actor scoring can address

some of these issues” by “allowing partial measurement invariance.” (p. 4281). Steenkamp

and Maydeu-Olivares (2021) similarly suggested that sum scores require measurement

invariance, but “factor scores based on the (partial) scalar invariance model” (p. 14) would

allow for cross-country comparisons.

However, as demonstrated in this short note, factor scores obtained by the popular

regression method (Thomson, 1935), which was used in both McNeish (2022) and

Steenkamp and Maydeu-Olivares (2021), are not necessarily invariant, even when they are

obtained from a partial invariance model where the noninvariance is adjusted so that the

latent variables can be compared. Perhaps even more surprisingly, such factor scores,

hereafter regression factor scores, may not be invariant even when invariance holds for the

items. We will use two heuristic examples with simulated data to illustrate the points. The

mathematical details then follow. In addition, we also illustrate that such properties of the

regression factor scores also generalize to similar scores based on item response models,

namely the expected a posteriori (EAP) and the maximum a posteriori (MAP) scores. The

code behind all analyses has been made publicly available on GitHub and can be accessed

at https://github.com/marklhc/fsinv-supp/. This study was not preregistered.

Example 1: When Invariance Holds

In the first example, we simulate data with two groups, each of size 50, and three

items based on the common factor model

https://github.com/marklhc/fsinv-supp/
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yg = νg + λgη + εg, (1)

where g = 1, 2 indexes groups, η is the latent factor, and invariance holds such that the

two groups have equal factor loadings (λ1 = λ2), intercepts (ν1 = ν2), and unique

variances and covariances (V [ε1] = Θ1 = Θ2 = V [ε2]). However, the factor mean

(α = E[η]) is higher for Group 2, whereas the factor variance (ψ = V [η]) is higher for

Group 1. We use the following parameter values:

λ1 = λ2 =


0.9

0.7

0.5

 ,ν1 = ν2 =


0

0

0

 ,Θ1 = Θ2 =


0.19

0 0.51

0 0 0.75

 ,

α1 = 0, α2 = 0.8, ψ1 = 1.6, ψ2 = 0.4.

We first simulated normally distributed true factor scores (η1 and η2) with the exact

means and variances, and then simulated item scores based on Equation 1 with normally

distributed ε. We then examined the relationship between sum scores (across three items)

and the true latent variable scores, and between the regression factor scores and the true

latent variable scores. Because invariance holds, if we take the sum score of the items for

each person, the relationship between the sum score and η is the same across groups, as

shown in Figure 1a, where the fitted lines between sum scores and the true latent variable

scores are the same across groups.

Now, let’s consider estimated factor scores. To obtain factor scores we need to first

fit a confirmatory factor model to the data. Because invariance holds in this example, we

can just fit the invariance model with equal loadings, intercepts, and unique variances

across groups (i.e., strict invariance, Horn & McArdle, 1992).

Using the lavaan R package (Rosseel, 2012), we confirm that the invariance model

fits well with the simulated data, with all parameter estimates being very close to the
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values we used to generate the data. The details can be found in the online supplemental

materials (https://github.com/marklhc/fsinv-supp/).

However, as shown in Figure 1b, using the regression method (implemented in

lavaan but the algorithm is the same in Mplus), the factor scores obtained from the

invariance model are not invariant, as the fitted lines with the factor scores, η̃, regressed on

η differ across groups, in both the intercepts and the slopes. For example, for a participant

in Group 1 with η = -0.5, the expected value of η̃ is -0.45; for a participant in Group 2

with the same level of η = -0.5, the expected value of η̃ is -0.1. Similar observations have

been reported in Davoudzadeh et al. (2020). We will later prove that regression factor

scores are not invariant, after the partial invariance example.

Example 2: Partial Invariance

In the second example, we make one modification to Group 2 such that

ν2 = [0, 0, 0.5]>, so Group 2 tends to have a higher score on item 3, when holding constant

the latent variable of interest. So only partial invariance holds in the population. As shown

in Figure 1c and as expected, the sum scores are not invariant, with the regression line for

Group 2 uniformly shifted upward.

The noninvariance of item 3 can be accounted for by fitting a partial invariance

model, where the intercept for item 3 is allowed unequal across groups. As shown in the

supplemental materials, such a model fits the data well, and we can recover the latent

means and variances used to simulate the data. However, while allowing item 3 to have

different intercepts puts the latent variables on the same metric across groups, this is not

preserved when computing factor scores based on the regression method, as shown in

Figure 1d. Indeed, the fitted lines are the same as in Figure 1b, where they differ in both

intercepts and slopes, meaning that the regression factor scores are neither metric invariant

nor scalar invariant.

https://github.com/marklhc/fsinv-supp/
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Proof That Regression Factor Scores Are Not Invariant

We will prove here that under a unidimensional factor model (Equation 1),

regression factor scores are generally not measurement invariant, and the results generalize

to multidimensional settings. Estimated factor scores, η̃, are weighted composites of the

item scores (e.g., Devlieger et al., 2016). When considering the mean structure, the general

form of η̃ is (e.g., Muthén, 2004)

η̃g = α̃g + Ag(yg − µyg), (2)

where µyg = νg + λgα̃g is a vector of model-implied item group means and A is a 1 × p

factor scoring matrix applied to the centered data. Different choices of A correspond to

different methods for computing factor scores. Note that here, α̃ is the latent variable

mean in the scoring stage, and does not need to correspond to the α values in the

estimation stage of the measurement model, although most software by default sets α̃ to

the α value in the estimated measurement model.

Combining with Equation 1, we can express a measurement model of η̃ for the

latent variable
η̃g = α̃g + Ag(νg + λgηg + εg − νg − λgα̃g)

= (1 − Agλg)α̃g︸ ︷︷ ︸
measurement intercept

+ Agλg︸ ︷︷ ︸
loading

ηg + Agεg︸ ︷︷ ︸
measurement error

(3)

Therefore, factor scores are metric invariant only when

A1λ1 = A2λ2, (4)

scalar invariant when, in addition,

(1 − A1λ1)α̃1 = (1 − A2λ2)α̃2, (5)

and strict invariant if, in addition,

A1Θ1A>
1 = A2Θ2A>

2 (6)
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For regression factor scores (Skrondal & Laake, 2001; Thomson, 1935),

Ag = ψ̃gλ>
g (ψ̃gλgλ>

g + Θg)−1, (7)

which depends on, ψ̃, the latent variance for scoring purposes. Note again that ψ̃ does not

need to correspond to the ψ values in the estimation stage of the measurement model;

however, because in most software (e.g., lavaan and Mplus), group-specific ψ and α from

the estimated measurement model are used for factor score computations for Equation 2,

regression factor scores are generally not measurement invariant unless the latent means

and variances are constant across groups, even when measurement invariance holds for

items. Thus, we see the results in Figure 1b.

On the other hand, for sum scores Zg = 1>yg, we have

Zg = 1>νg︸ ︷︷ ︸
measurement intercept

+ (1>λg)︸ ︷︷ ︸
loading

ηg + 1>εg︸ ︷︷ ︸
measurement error

,

so one can see that sum scores are metric invariant when λ is equal across groups, scalar

invariant when λ and ν are equal across groups, and strict invariant when, additionally, Θ

is equal across groups.1

The case of Bartlett factor scores

On the other hand, factor scores based on the Bartlett method (Bartlett, 1937),

which is available in most structural equation modeling programs, has

Ag = (λ>
g Θ−1

g λg)−1λ>
g Θ−1

g ,

and so Agλg = 1, meaning that such scores always have a loading of 1 and an intercept of

0 when treated as an indicator of the latent variable. Thus, factor scores based on the

Bartlett method are generally at least scalar invariant.

1 Even when the items are not invariant, sum scores can still be invariant when the sums of loadings,

intercepts, and error variances and covariances are equal across groups. This can happen when one group

has a higher intercept on one item but a lower intercept on another item than the other group, and is

related to the “unity-weights invariance” condition discussed in Horn and McArdle (1992).
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On the other hand, the scoring matrix in Equation 7 for regression factor scores can

be written as

Ag = (ψ̃−1
g + λ>

g Θ−1
g λg)−1λ>

g Θ−1
g ,

using a variant of the Woodbury identity (Petersen & Pedersen, 2012, p. 18, Equation

158), which looks similar to the scoring matrix for Bartlett factor scores except that ψ̃−1
g is

added inside the first pair of parentheses, so typically Agλg < 1, which produces shrinkage

for regression factor scores.2.

Remedy: Using Common Latent Distributions When Computing Regression

Factor Scores

From the previous discussion, one reason that regression factor scores are not

invariant even when measurement invariance holds for items is that group-specific latent

means and variances are used when computing factor scores. One modification to alleviate

the problem is to use common latent means and latent variances for each group when

computing regression factor scores. This ensures that when invariance holds for the items,

A is constant. Figure 2a shows this for the simulated data in Example 1, where we use ψ̃

= 1 and α̃ = 0.5 for both groups when computing factor scores.3 While such an option is

not available in software like lavaan or Mplus, one can use software that supports matrix

operations (e.g., R and SPSS) with Equation 3 and Equation 7 to directly compute the

regression factor scores with the same latent means and variances across groups.

An interesting observation is that factor scores depend on the item loadings and

2 We thank an anonymous reviewer for pointing this out. It can be shown that Agλg is also the theoretical

reliability for regression factor scores.

3 The chosen common mean and variance for η are used to rescale the latent variable for scoring purposes,

and do not need to correspond to the scaling of the latent variable in the parameter estimation stage.

Other mean and variance values give the same invariance properties for regression factor scores under full

invariance of the items.
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unique variances and covariances (as in the scoring matrix A and Equation 4), but not the

item intercepts (as in Equation 5), as the intercepts are cancelled out in Equation 3.

Because of this, when partial scalar invariance holds (i.e., where λ1 = λ2 but the intercepts

are different for some items) and Θ is equal across groups, regression factor scores based on

the partial invariance model and using the same latent distributions are invariant.

However, when only partial metric invariance holds, or when Θ is different across groups,

using common latent means and variances still results in noninvariant factor scores,

because when λ are not equal across groups, the resulting loadings (and intercepts) of η̃ as

an indicator of η are still different. Using similar data as in Example 2 but with λ3 for

Group 2 changed to 10 (intentionally chosen so that the difference is clearer in the graph),

Figure 2b confirms that regression factor scores are still not invariant even when supplying

the same latent means and variances, as the intercepts and slopes are different. Also, the

degree of measurement error in the factor scores is much smaller in Group 2 because the

scoring matrix is different across groups due to the scoring matrix A being a function of

the loadings and playing a role in Equation 6.

Multiple-Indicator Multiple Cause (MIMIC)

An alternative to multiple-group analysis in modeling partial invariance is to use

the MIMIC model. Here we limit our discussion to traditional MIMIC with continuous

indicators. However, as recent methods such as moderated nonlinear factor analysis

(MNLFA, Bauer & Curran, 2016) have MIMIC as the simplest case, our results should

generalize to those methods, which have gained in popularity for yielding factor scores to

be pooled in integrative data analysis.

To demonstrate, we fit the MIMIC model for the above-discussed simulated data for

(a) Example 1 (invariance holds) and (b) Example 2 (partial invariance holds). For (a), we

only include the effect of the grouping variable on the latent factor, whereas for (b), the

grouping variable predicts both the latent factor and Item 3 as Item 3 is not scalar

invariant. We used Mplus 8.8 and lavaan to fit the MIMIC models and obtain the
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regression factor scores. As shown in Figure 3, regression factor scores based on the

MIMIC model are invariant for neither (a) nor (b). Specifically, given the same level of the

latent variable, factor scores for Group 2 are generally higher, as Group 2 has a larger

latent mean. The Appendix gives more explanation, but the intuition is that in structural

equation modeling, the MIMIC model is handled by treating the grouping variable as a

latent variable with known means and variances, and when there are multiple latent

variables, regression factor scores for a given latent variable generally are functions of all

other latent variables, including the grouping variable. Thus, when computing scores for η,

the scoring matrix is a function of the grouping variable, which violates invariance.4

Similar observations have again been reported in Davoudzadeh et al. (2020).

Factor Scores for Item Response Models

While the above discussion focuses on factor scores on continuous indicators, mainly

because the math is more tractable, it generalizes to scores based on item response models

or other models for discrete items. For example, let f(y | η,ω) be the likelihood function

under any measurement model linking item scores y and latent variable η with

measurement parameters ω. The commonly used scores based on the expected a posteriori

(EAP) method can be obtained as the mean of the following posterior distribution of η:

f(y | η,ω)π(η)∫
f(y | h,ω)π(h) dh,

where π(·) is the prior distribution for the latent variable, and is typically set to the same

distribution of the latent variables used in the estimation stage (i.e., normal distribution

with specific means and variances). When the measurement model is chosen as the linear

factor model discussed above, the EAP method is the same as the factor scores based on

4 As pointed out by an anonymous reviewer, there are alternative ways to estimate factor scores than the

one used in Mplus and lavaan at the time of this writing. For example, Skrondal and Laake (2001)

discussed methods for separately estimating factor scores for each individual latent variable or each block

of latent variables, which may result in a scoring matrix that is not a function of the grouping variable.
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the regression method (see Thissen & Thissen-Roe, 2020). Also, the maximum a posteriori

(MAP) method, which is based on the posterior mode, gives the same factor scores as the

posterior distribution is symmetric under the linear factor model (Thissen & Thissen-Roe,

2020). On the other hand, the maximum likelihood estimates of factor scores do not

depend on priors and are obtained by maximizing the likelihood function, which reduces to

Bartlett factor scores under the linear factor model (Thissen & Thissen-Roe, 2020).

Therefore, like regression factor scores, the EAP and MAP scores are also

noninvariant even under a multiple-group measurement invariance model, when

group-specific latent means and variances are used for scoring. Figure 4a shows an example

similar to Example 1, but with nine dichotimized items. Specifically, we used the item

factor model specification (Wirth & Edwards, 2007) by assuming that each binary item has

an underlying normal variate. All loadings are 0.8 and all intercepts and thresholds are 0.

We used the mirt R package (Chalmers, 2012) to estimate a multiple-group 2-parameter

logistic item response model, with the threshold and discrimination parameters held

invariant across groups (i.e., no differential item functioning [DIF]). The figure shows that

the relation between the EAP scores and the latent variables (which are known because we

use simulated data) is different across the two groups.

On the other hand, EAP scores are invariant when the same latent distributions are

used for scoring for both groups, when the items are invariant (i.e., no DIF), as shown in

Figure 4b. Such an option is available in the fscores() function of mirt R package by

specifying the mean and cov arguments.

We have shown that, even under full invariance of items, EAP scores are not

invariant when computed using group-specific latent distributions, and it is easy to infer

and show that EAP scores with group-specific latent distributions are also not invariant

under partial invariance of items. Here we will show that, like regression factor scores, the

EAP scores are not invariant under a partial invariance model (i.e., when DIF is modeled)

even when supplying the same latent mean and variance. Given that observed scores are
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not linear functions of the latent variables in item response models, it is harder to visualize

the noninvariance of EAP scores using just one simulated data set; instead, we conducted a

small Monte Carlo simulation of partial invariance for binary items. Specifically, three out

of nine items are noninvariant; for Group 1, all loadings are 0.8 and all intercepts are 0,

whereas the noninvariant loadings are 0.4 and the noninvariant intercepts are 0.5 for Group

2. All thresholds are 0. We performed 5,000 replications, each with 100 observations per

group. We simulated the latent scores to be exactly the same for both groups and across

replications to minimize sampling errors. Therefore, if EAP scores are invariant, they

should have identical distributions across groups for every level of the latent variable, η.

Figure 5 shows the contrary, as the scores are higher for Group 1 for a higher level of η,

and higher for Group 2 for a lower level of η.

Discussion

Since the development of factor analysis, different factor-scoring mechanisms have

been proposed to score the latent variables. Among the most popular are the regression

method and the Bartlett method. The regression method, which produces shrinkage scores

according to the reliability of the indicators, also generalizes to the commonly used EAP

and MAP scores in item response models. While such scores are primarily used for

assessment purposes in estimating individuals’ standing on some latent trait (mostly the g

factor) in the early days, over the years, researchers have been interested in using those

scores in statistical analyses. Especially after the development of structural equation

modeling, there has been interest in using either sum scores or factor scores as proxies of

abstract latent variables so that models can be simplified (e.g., Skrondal & Laake, 2001).

While earlier applications of factor scores concern analyses of a single group, more recent

applications—including data harmonization across studies and waves in longitudinal

analyses—concern analyses of multiple samples. The goal of such analyses is to obtain

scores that are comparable across samples. Unfortunately, as highlighted earlier, there

seems to be a conception that in a model where the latent variables are scaled to the same



FACTOR SCORES NOT INVARIANT 14

metric, the corresponding factor scores will be on the same metric as well (e.g., Curran &

Hussong, 2009; McNeish, 2022; Steenkamp & Maydeu-Olivares, 2021). To our knowledge,

there has been no systematic discussion on whether factor scores are on the same metric,

even when partial invariance is accounted for.

As shown in the above examples, like unweighted sum scores, regression factor

scores—which are weighted sums of items scores—are not invariant when some items are

noninvariant. Such a conclusion generalizes to EAP or MAP scores that are popular when

using item response models. Therefore, obtaining these factor scores does not result in

variables that are on the same metric across samples or time, even when partial invariance

(or DIF) is accounted for. This is in contrast to some recommended practices of data

harmonization or score linking (e.g., Curran & Hussong, 2009; McArdle et al., 2009). Note

that the condition of partial invariance is the same as in linkage of measurement based on

common items—where the common items are assumed invariant and the unique items are

assumed noninvariant (as they are different items), and thus our conclusions would

generalize to such situations. Perhaps more importantly, when computed based on a

multiple-group analysis with group-specific latent means and variances, which are usually

the default in popular software packages (e.g., Mplus, lavaan, mirt), shrinkage scores are

even noninvariant when full invariance of items hold. Therefore, we strongly caution

researchers when inferring differences across groups/time with such scores.

One thing to clarify is that, while shrinkage factor scores are not measurement

invariant, these scores may preserve some properties of the latent distributions. For

example, looking at Equation 3, one can see that regression scores based on group-specific

latent distributions preserve the latent mean differences. On the other hand, using

shrinkage scores as the response variable in regression results in biased regression

coefficients, which is well documented in the literature (e.g., Skrondal & Laake, 2001).

Shrinkage scores also generally resulted in biased standardized coefficients as they tend to



FACTOR SCORES NOT INVARIANT 15

have smaller variances than the true latent variables (Devlieger et al., 2016).5 In an

example in the supplemental materials, we showed that because regression factor scores are

generally not metric invariant when using group-specific latent means and variances, their

use can lead to spurious interaction effects. Furthermore, using scores that are

measurement invariant does not necessarily lead to unbiased parameter estimation; for

example, while we have shown that scores based on the Bartlett method are invariant, their

use as predictors in regression also results in biased regression coefficients (Skrondal &

Laake, 2001), because measurement error in them is not accounted for.

The take-home message is that measurement models are used to calibrate the latent

variables on the same metric, not the factor scores. To obtain valid inferences involving

latent variables, instead of using factor scores, one can directly specify a hypothesized

model concerning latent variables on top of the partial invariance models. Such a practice

is routine in structural equation modeling, where researchers jointly model the structural

and the measurement parts of the model, such as in second-order growth analysis (e.g.,

Ferrer et al., 2008). The joint modeling approach not only calibrates the latent variables on

the same metric, but also accounts for the measurement errors in the indicators. On the

other hand, the appeal of using factor scores is that they allow for a divide-and-conquer

approach so that researchers can focus their energy on the measurement part first, and

then deal with a structural model that has fewer variables and parameters. Fortunately,

there have been several promising approaches that lead to valid inferences with factor

scores, by accounting for the relation between factor scores and the latent variables. These

include factor score regression (e.g., Croon, 2002; Devlieger et al., 2016), the

5 For example, in Example 1 with full invariance, the pooled standard deviation (SD) of the latent

variables across the two groups is
√

(1.6 + 0.4)/2 = 1, and the standardized mean difference is 0.8. For

regression factor scores, if we use group-specific latent means and variances, the unstandardized mean

difference is 0.808, and the pooled SD is 0.93, so the standardized mean difference is 0.87. If we use

common latent means and variances, the unstandardized mean difference is 0.64, and the pooled SD is

0.87, so the standardized mean difference is 0.74.
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structural-after-measurement approach (Rosseel & Loh, 2022), and two-stage path-analysis

(Lai et al., 2023; Lai & Hsiao, 2022). We strongly encourage researchers to adopt these

approaches when utilizing factor scores for analysis.
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Appendix

MIMIC factor scores

In this appendix, we will show that regression factor scores are not invariant when

the latent variable is predicted by a grouping variable (or a covariate). In Mplus and

lavaan, under MIMIC, the grouping variable G is represented as a latent variable.

Therefore, for a unidimensional factor model with respect to one grouping variable, Ψ is of

dimension 2 × 2. Assume that the model is identified by letting the conditional variance of

η be 1,

Ψ =

1

0 V (G)

 ,B =

0 β

0 0

 ,Λ =

λ 0

0 1

 ,

Θ =

Θy 0

0 0

 ,
where β is the direct path from G to η, V (G) is the variance of the grouping variable, λ is

the loadings of y on η, and Θy is the unique covariance matrix of y.

With MIMIC, the regression factor scores (η̃, G̃) for (η,G) are computed with the

scoring matrix

A = ΣlvΛ>[ΛΣlvΛ> + Θ]−1, (8)

where Σlv = (I − B)−1Ψ[(I − B)−1]> is the implied covariance matrix of (η,G). A can be

partitioned as

y G

η̃

G̃

 a1 a2

a3 a4

 ,

where a1 is the row vector of scoring weights for η̃ from the items, and a2 is the weight for

computing η̃ from G. In other words, factor scores for η̃ are computed as a1y + a2G. When
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the items are invariant, a nonzero a2 would mean that the factor scores are not invariant,

because η̃ is a function also of G. Note that the factor scores G̃ for G are also computed,

but generally one gets G̃ = G and they are not of interest.

Because a2 is the last element from the first row of A, from Equation 8, we only

need to consider the product of the first row of ΣlvΛ> and the last column of

[ΛΣlvΛ> + Θ]−1, the latter being the inverse of the implied covariance of (y, G). The first

row of ΣlvΛ> is [λ>|β]. Let V (y) = V (η)λλ> + Θy be the implied covariance matrix of y.

The implied covariance matrix of (y, G) is

ΛΣlvΛ> + Θ =

 V (y) βV (G)λ

βV (G)λ> V (G)

 .
Because the above covariance matrix is positive definite, its inverse cannot have a column

of all zeros. Given that a2 is computed as the matrix multiplication of the first row of

ΣlvΛ> and the second column of the inverse of the implied covariance matrix, and that

λ 6= 0, a2 6= 0 unless β = 0 (in which case the implied covariance matrix and its inverse are

block diagonal). Thus, regression factor scores under MIMIC are not invariant even when

invariance holds for the items.

Similar steps can be used to show that regression factor scores are not invariant

under MIMIC with partial invariance, where a direct path is allowed from G to one or

more items in y. In structural equation model representation of MIMIC with p̃

noninvariant items, the noninvariant items are also treated as latent variables so that Λ,

Ψ, and B have expanded dimensions.
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Figure 1

Observed scores against true latent factor under invariance (a and b) or partial invariance

(c and d).
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Figure 2

Regression factor scores against true latent factor under (a) full invariance and (b) partial

metric invariance when using the same latent distribution.
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Figure 3

Regression factor scores against true latent factor under MIMIC with (a) invariance and

(b) partial scalar invariance.
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Figure 4

Expected a posteriori (EAP) scores against true latent factor under full invariance, with (a)

group-specific and (b) equal means and variances. The fitted curves are obtained using

natural cubic splines.
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Figure 5

Expected a posteriori (EAP) scores against true latent factor under partial invariance

across 5,000 replications. The vertical bars show the 10th and 90th percentiles, and the

lines show the median across replications.
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